본문 바로가기 주메뉴 바로가기 하위메뉴 바로가기

WORLD CLASS S&T UNIVERSITY

Academics

College of Life Science and Bioengineering

With the specialization of biology, brain science, medical science, and IT/NT, KAIST has accumulated academic capability in the area of biology. The College of Life Science and Bioengineering was founded to efficiently support the fusion research environment of KI for Biocentury at KAIST.

The College of Life Science and Bioengineering is composed of the Department of Biological Sciences, Department of Bio & Brain Engineering, and Graduate School of Medical Science & Engineering. The college pursues multidisciplinary education & research in the area of biology and the development of modern science through the fusion of the IT & NT foundation techniques for the development of the nation’s biological science and technology.

The Department of Biological Sciences fosters scientists and engineers of life science and biotechnology equipped with creative research skills to lead in the development of science and technology in the area of biological sciences and excellent scientists equipped with future oriented thinking and a holistic personality.

The multidisciplinary Department of Bio & Brain Engineering fosters a creative workforce that is capable of creating new knowledge and techniques in the fusion areas of electronics, computers, and nanotechnology based on biomedical science.

The Graduate School of Medical Science & Engineering is catered to doctors (specialists), graduates from medical schools, dental schools, and schools of oriental medicine for the development of new medicine and medical devices. The Graduate School of Medical Science & Engineering was established with the purpose of developing life sciences and medical technology and fostering a high-quality workforce equipped with a multidisciplinary knowledge in basic medicine, life science, and biomedical engineering, as well as research experience.

Academic Degree Curriculum
Academic Degree Curriculum
Department/Major Bachelor's Courses Master's Courses Doctoral Courses Office of Academic Affairs Website
Department of Biological Sciences
042-350-2602(F.2610) Homepage go
Graduate School of Medical Science and Engineering
  042-350-4232(F.4240) Homepage go
Interdisciplinary Majors and Educational Programs
Education Program
College
(Department/Major)
Interdisciplinary Majors and Educational Programs Bachelor's Courses Master's Courses Doctoral Courses Office of Academic Affairs Website
Graduate School of Medical Science and Engineering
Biomedical Science and Engineering
Interdisciplinary Program
  042-350-4232(F.4240) Homepage go
※ Department of Bio and Brain Engineering is changed of affiliation from College of Life Science and Bioengineering to College of Engineering on March 1st, 2015.
KAIST COMPASS in Life Science & Bioengineering

2016 Fall Mapping neuromodulatory projections to Innate and adaptive immunity to hepatitis viruses Inositol control of neurotransmitter release SoxF promotes developmental angiogenesis 14-3-3 makes new partners for growth control 2016 Spring “LUH”-sisting of PIF1 germination inhibition Clinging together in the darkness Actin remodeling confers BRAF inhibitor resistance Impairment of antiviral immunity Loss of MLCK promotes cell migration and

News
 
First Mutations in Human Life Discovered

Please see below a press release on the latest publication by Professor Young Seok Ju of the Medical Science and Engineering Graduate School at KAIST in Nature , March 22, 2017.The referenced research article is entitled “Somatic Mutations Reveal Asymmetric Cellular Dynamics in the Early Human Embryo” (DOI:10.1038/nature21703)

In courtesy of the Wellcome Trust Sanger Institute

March 22, 2017

First mutations in human life discovered

Archaeological traces of embryonic development seen in adult cells

The earliest mutations of human life have been observed by researchers at the Wellcome Trust Sanger Institute and their collaborators. Analysing genomes from adult cells, the scientists could look back in time to reveal how each embryo developed.

Published in Nature today, the study shows that from the two-cell stage of the human embryo, one of these cells becomes more dominant than the other and leads to a higher proportion of the adult body.

A longstanding question for researchers has been what happens in the very early human development as this has proved impossible to study directly. Now, researchers have analysed the whole genome sequences of blood samples (collected from 279 individuals with breast cancer) and discovered 163 mutations that occurred very early in the embryonic development of those people.

Once identified, the researchers used mutations from the first, second and third divisions of the fertilised egg to calculate which proportion of adult cells resulted from each of the first two cells in the embryo. They found that these first two cells contribute differently to the whole body. One cell gives rise to about 70 percent of the adult body tissues, whereas the other cell has a more minor contribution, leading to about 30percent of the tissues. This skewed contribution continues for some cells in the second and third generation too.

Originally pinpointed in normal blood cells from cancer patients, the researchers then looked for these mutations in cancer samples that had been surgically removed from the patients during treatment. Unlike normal tissues composed of multiple somatic cell clones, a cancer develops from one mutant cell. Therefore, each proposed embryonic mutation should either be present in all of the cancer cells in a tumour, or none of them. This proved to be the case, and by using these cancer samples, the researchers were able to validate that the mutations had originated during early development.

Dr. Young Seok Ju, first author from the Wellcome Trust Sanger Institute and the Korea Advanced Institute of Science and Technology (KAIST), said: "This is the first time that anyone has seen where mutations arise in the very early human development. It is like finding a needle in a haystack. There are just a handful of these mutations, compared with millions of inherited genetic variations, and finding them allowed us to track what happened during embryogenesis."

Dr. Inigo Martincorena, from the Sanger Institute, said: "Having identified the mutations, we were able to use statistical analysis to better understand cell dynamics during embryo development. We determined the relative contribution of the first embryonic cells to the adult blood cell pool and found one dominant cell - that led to 70 percent of the blood cells - and one minor cell. We also sequenced normal lymph and breast cells, and the results suggested that the dominant cell also contributes to these other tissues at a similar level. This opens an unprecedented window into the earliest stages of human development."

During this study, the researchers were also able to measure the rate of mutation in early human development for the first time, up to three generations of cell division. Previous researchers had estimated one mutation per cell division, but this study measured three mutations for each cell doubling, in every daughter cell.

Mutations during the development of the embryo occur by two processes - known as mutational signatures 1 and 5. These mutations are fairly randomly distributed through the genome, and the vast majority of them will not affect the developing embryo. However, a mutation that occurs in an important gene can lead to disease such as developmental disorders.

Prof. Sir Mike Stratton, lead author on the paper and Director of the Sanger Institute, said: "This is a significant step forward in widening the range of biological insights that can be extracted using genome sequences and mutations. Essentially, the mutations are archaeological traces of embryonic development left in our adult tissues, so if we can find and interpret them, we can understand human embryology better. This is just one early insight into human development, with hopefully many more to come in the future."

Korea Advanced Institute of Science and Technology (KAIST)
KAIST was established by the Korean government in 1971 as a research university to grant graduate degrees only in science and technology. In 1986, the university broadened its mission to offer undergraduate programs. Over the past 45 years, KAIST has played a critical role in Korea's rapid economic growth, conducting the majority of the nation's strategic research and development (R&D) projects and training highly skilled researchers and engineers. Today, KAIST has received international recognition as a global research university, appearing annually since 2008 in the top 100 world universities. http://www.kaist.edu

The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac. uk

Wellcome
Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Figure 1. Detection of somatic mutations acquired in early human embryogenesis



Figure 2. Unequal contributions of early embryonic cells to adult somatic tissues

Newsletter
Department of Biological Sciences KAIST COMPASS
Contact Information for the College of Life Science and Bioengineering: 042-350-ext.

Office of the Dean of the College of Life Science and Bioengineering: 2125
College of Life Science and Bioengineering Academic and Student Affairs Team: 1401, 1409, Fax: 1400

KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

T. 042-350-2114 / F. 042-350-2210 (2220)

Copyright (C) 2014, Korea Advanced Institute of Science and Technology, All Rights Reserved.

KAIST Youtube KAIST Twitter