< 강정구 교수, 김용훈 교수 >
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다.
이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다.
이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다.
매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다.
경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다.
식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다.
하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다.
연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다.
이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다.
또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다.
이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다.
연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다.
강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정
그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다. 우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다. 최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다. 연구팀이 개발한
2025-06-17수소는 탄소를 배출하지 않는 청정 에너지원으로 주목받고 있다. 이 가운데 물을 전기로 분해하는 수전해(water electrolysis) 기술은 친환경 수소 생산 방식으로 주목받으며, 특히 양이온 교환막 수전해(PEMWE)는 고순도 수소를 고압으로 생산할 수 있어 차세대 수소 생산 기술로 평가받는다. 그러나 기존 PEMWE 기술은 고가의 귀금속 촉매와 코팅재에 대한 의존도가 높아, 상용화에 한계를 안고 있었다. 우리 연구진이 이러한 기술적·경제적 병목을 해결할 새로운 해법을 제시했다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 한국에너지기술연구원(원장 이창근) 두기수 박사와의 공동연구를 통해, 고가의 백금(Pt) 코팅 없이도 고성능을 구현할 수 있는 차세대 수전해 기술을 개발했다고 11일 밝혔다. 연구팀은 수전해 전극에서 고활성 촉매로 주목받는 ‘이리듐 산화물(IrOx)’이 제 성능을 발휘하지 못하는 주된 원인에 집중하였다. 그 이유는
2025-06-11기후 변화와 지구온난화를 막기 위해서는 이산화탄소(CO2)가 ‘얼마나’ 배출되고 있는지를 정확히 파악하는 것이 핵심이다. 이를 가능하게 하는 것이 바로 이산화탄소 모니터링 기술이다. 최근 한국 연구진이 외부 전력 없이도 이산화탄소 농도를 실시간 측정하고 무선으로 전송할 수 있는 시스템을 개발해 환경 모니터링 기술의 새로운 가능성을 열었다. 우리 대학 전기및전자공학부 권경하 교수 연구팀이 중앙대학교 류한준 교수팀과 공동연구를 통해, 주변의 미세 진동 에너지를 수확해 이산화탄소 농도를 주기적으로 측정할 수 있는 자가발전형 무선 모니터링 시스템을 개발했다고 9일 밝혔다. 지구온난화의 주요 원인인 이산화탄소 배출은 산업계의 지속가능성 평가 지표로 자리 잡고 있으며, 유럽연합(EU)은 이미 공장 배출량 규제를 도입한 상태다. 이러한 규제 흐름에 따라, 효율적이고 지속 가능한 이산화탄소 모니터링 시스템은 환경 관리와 산업 공정 제어에 필수적인 요소로 주목받고 있
2025-06-09병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다. 우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다. 연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ
2025-05-29지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다. 세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다. 이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함
2025-04-01