
< (왼쪽부터) 전기및전자공학부 김성민 교수, 배강민 박사과정 >
우리 대학 전기및전자공학부 김성민 교수 연구팀이 세계 최초로 천 개에서 수천만 개에 이르는 대규모 사물인터넷(IoT) 동시 통신을 위한 `밀리미터파 후방산란 시스템'을 개발했다고 28일 밝혔다.
밀리미터파 후방산란 기술은 대규모 통신을 지원하기 위한 기술로 주목받고 있다. 밀리미터파 통신은 30~300기가헤르츠(GHz)의 반송파 주파수 대역을 활용하는 통신으로, 5G/6G 등 표준에서 도입을 준비 중인 차세대 통신 기술이다. 이는 넓은 주파수 대역폭(10GHz 이상)을 확보할 수 있어 높은 확장성을 제공한다.
또한, 후방산란 기술은 기기가 직접 무선 신호를 생성하지 않고 공중에 존재하는 무선 신호를 반사해 정보를 전달하는 방식으로, 무선 신호를 생성하는데 전력을 소모하지 않기 때문에 초저전력 통신을 가능하게 할 수 있는 기술이다. 이는 낮은 설치비용으로 대규모 사물인터넷 기기의 광범위한 인터넷 연결성을 제공할 수 있다.
김성민 교수 연구팀은 밀리미터파 후방산란을 이용해 수천만 개의 사물인터넷 기기들이 실내에 배치된 복잡한 통신 환경에서 모든 신호가 동시에 복조되도록 설계하는 데 성공했다.
전기및전자공학부 배강민 박사과정이 제1 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2022에 이번 6월 발표됐으며, 최우수논문상을 수상했다. (논문명: OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar). 이는 작년 우리 대학 전기및전자공학부에서 아시아 대학 최초로 ACM 모비시스 2021 최우수논문상을 받은 이후 연속된 수상으로 더욱 의미가 깊다.
5G/6G 네트워크의 핵심 구성 요소 중 하나인 사물인터넷은 기하급수적인 성장세를 보이고 있으며, 2035년까지 1조 개 이상의 기기가 생산될 전망이다. 대규모 사물인터넷 기기들의 인터넷 연결을 지원하기 위해서 5G, 6G 표준 각각 4G 대비 10배 및 100배의 네트워크 밀도를 지원하는 것을 목표로 하고 있다. 따라서, 대규모 통신을 위한 실용적인 시스템의 필요성이 대두되고 있다.
그러나 현재 밀리미터 후방산란 시스템은 밀리미터파의 높은 주파수에 따른 신호 감쇄와 후방산란 시스템의 반사 손실이 합쳐져 제한적인 환경에서만 통신이 가능하다. 즉, 다양한 장애물과 반사체가 설치된 복잡한 통신 환경에서 작동하지 않아 상대적으로 자유로운 설치가 필요한 대규모 사물인터넷 기기에 광범위한 인터넷 연결성을 제공하는 데 한계가 있다.

< 그림 1. 대규모 통신을 실험하기 위해 1100개 태그들이 동시에 발신하는 환경을 추적 기반 실험으로 평가 >
연구팀은 FMCW(주파수 변조 연속파) 레이더의 높은 코딩 이득에서 해답을 찾았다. 연구팀은 레이더의 코딩 이득을 그대로 유지하는 동시에, 후방산란 신호와 주변 잡음을 원천적으로 분리해내는 신호 처리 방법을 개발해 기존 FMCW 레이더 대비 십만 배 이상 개선된 수신감도를 달성했다. 이는 실용적인 환경에서의 통신을 지원한다. 더욱이, 연구팀은 태그의 물리적인 위치에 따라 복조된 신호의 주파수가 달라지는 레이더 특성을 활용해 위치에 따라 통신 채널을 자연적으로 할당 받는 후방산란 시스템을 설계했다. 이는 초저전력 후방산란 통신이 10GHz 이상의 밀리미터파 주파수 대역폭을 전부 활용할 수 있게 하여 수천만 사물인터넷 기기들의 동시 통신을 지원한다.
개발된 시스템은 상용 기성품 레이더를 게이트웨이로 활용할 수 있어 적용 용이성이 높다. 또한, 연구팀의 후방산란 기술은 10마이크로와트(μW) 이하의 초저전력으로 작동해 코인 전지 하나로 40년 이상 구동 가능해 설치 및 유지보수 비용을 크게 줄일 수 있다.

< 그림 2. ACM 모비시스 수상 모습 >

< 그림 3. ACM 모비시스 상장 >
연구팀은 다양한 장애물과 반사체가 설치된 사무실 환경에 무작위로 설치된 밀리미터파 후방산란 기기들의 통신이 가능함을 확인했다. 나아가 연구팀은 실험을 통해 총 1,100개의 기기가 송신하는 정보를 동시에 수신하는 것이 가능함을 확인하여 대규모 사물인터넷 구동을 검증했다.
이번 성과는 5G/6G 등 차세대 통신에서 요구하는 네트워크 밀도를 훨씬 웃도는 연결성을 자랑한다. 이에, 이번 시스템은 향후 도래할 초연결 시대를 위한 디딤돌 역할을 할 수 있을 것으로 기대된다.
김성민 교수는 "밀리미터파 후방산란은 대규모로 사물인터넷 기기들을 구동할 수 있는 꿈의 기술이며 이는 기존 어떠한 기술보다도 더욱 대규모의 통신을 초저전력으로 구동할 수 있다ˮ라며 "이 기술이 앞으로 도래할 초연결 시대에 사물인터넷의 보급을 위해 적극적으로 활용되길 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
국내 1인 가구가 800만 세대를 넘어 전체의 36%를 차지하며 역대 최고치를 기록했다. 서울시 조사에 따르면 1인 가구의 62%가 ‘외로움’을 느끼는 등 고립감과 정신건강 문제가 심화되고 있다. 우리 대학 연구진은 스마트폰·웨어러블의 한계를 넘어, 가정 내 IoT 데이터를 통해 일상 리듬이 흐트러질수록 정신건강이 악화되는 핵심 신호임을 밝혀냈다. 이번 연구는 개인 맞춤형 정신건강 관리 시스템 개발의 기반이 될 것으로 기대된다. 우리 대학은 전산학부 이의진 교수 연구팀이 가정 내 사물인터넷(IoT) 센서 데이터를 활용해 개인의 정신건강 상태를 정밀하게 추적할 수 있는 가능성을 입증했다고 21일 밝혔다. 정신건강 관리를 위해선 자신의 상태를 꾸준히 파악하는 것이 중요하지만, 기존의 스마트폰이나 웨어러블 기반 추적 방식은 사용자가 기기를 착용하거나 소지하지 않는 집 안에서는 데이터가 누락되는 한계가 있었다. 이에 연구팀은 가정 내 환경 데이터에
2025-10-21최근 인공지능(AI) 모델이 길고 복잡한 문장을 이해하고 처리하는 능력이 커지면서, 연산 속도와 메모리 효율을 동시에 높일 수 있는 새로운 반도체 기술의 필요성이 커지고 있다. 이런 가운데 우리 대학 ·국제연구진이 거대언어모델(LLM)의 추론 속도는 4배 높이면서 전력 소비는 2.2배 줄인 트랜스포머(Transformer)와 맘바(Mamba) 하이브리드 구조 기반의 AI 반도체 핵심 두뇌 기술을 세계 최초로 메모리 내부에서 직접 연산이 가능한 형태로 구현하는 데 성공했다. 우리 대학은 박종세 교수 연구팀이 미국 조지아 공과대학교(Georgia Institute of Technology) 및 스웨덴 웁살라 대학교(Uppsala University)와 공동연구를 통해, 차세대 인공지능 모델의 두뇌 역할을 하는 ‘AI 메모리 반도체(PIM, Processing-in-Memory)’ 기반 기술 ‘PIMBA’를 개발했다고 17일 밝
2025-10-17학부 1, 2학년으로만 구성된 4인 학생 팀의 논문이 인공지능 분야 국제 학술대회인 ‘International Conference on Learning Representations (ICLR) 2025’의 ‘Advances in Financial AI Workshop’에 채택됐다. 이번에 채택된 논문 “Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems”은 김현준, 김세종, 송현서, 서현우 학생(모두 공동 1저자)이 함께 작성했으며, 김현준 학생이 교신저자를 겸했다. 특히 모든 팀원이 논문 작성 경험이 전혀 없는 학부 저학년 학생들로만 구성되어 그 의미가 더욱 크다. 이 연구는 대규모 언어 모델(LLM)이 금융 질의응답 시스템에서 활용될 때 필요한 정보를
2025-04-01최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과
2025-03-13우리 연구진이 챗GPT를 활용해 금속 유기 골격체(Metal-Organic Frameworks, MOFs) 연구 논문에서 실험 데이터를 자동으로 추출하는 데이터 마이닝 툴(이하 L2M3)을 개발했다. L2M3는 MOF의 합성 조건 및 물성 정보를 체계적으로 수집하며, 분류, 정보 식별 및 데이터 추출 작업에서 각각 98.3%, 97.3%, 95.3%의 높은 정확도를 기록했다. 또한, 추출한 데이터를 기반으로 MOF의 합성 조건을 추천하는 시스템을 개발하여 연구자들의 실험 과정 최적화를 지원하고 있어 화제가 되고 있다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 대규모 언어 모델(이하 LLMs) 급격한 발전에 주목하며, 이를 활용을 통해 금속 유기 골격체 문헌에서 MOF의 합성 및 물성 정보를 대량으로 추출하는 데이터 마이닝 툴(L2M3)를 개발했다고 7일 발표했다. 최근 MOF에 대한 연구들이 활발히 진행되어 MOF 실험 데이터가 축적되고 있다. 이에 따라 MOF 연구
2025-02-07