
< 생명화학공학과 최남순 교수 >
1회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고용량, 고에너지밀도 이차전지 개발이 필수적이다. 이에 높은 가역용량을 가지는 니켈리치 양극과 흑연보다 10배가량 높은 용량을 발현하는 실리콘 음극 물질이 차세대 리튬이온전지의 소재로 주목받고 있다. 하지만 기존 전해질 첨가제 연구는 기존 물질들의 스크리닝 기법을 통하여 시행착오를 거쳐 개발되기 때문에 시간과 비용이 많이 소모되어 신규 전극 소재에 대응하기 어려운 한계점을 보였다.
우리 대학 생명화학공학과 최남순 연구팀이 고려대 곽상규 교수팀, UNIST 홍성유 교수팀, 현대자동차, 한국화학연구원과 공동연구를 통해, 고용량 실리콘 기반 음극과 니켈리치 양극으로 구성된 리튬이온 이차전지의 상온 및 고온 장수명화를 가능하게 하는 전해질 첨가제 기술을 개발했다고 19일 밝혔다.
연구팀이 개발한 전해질 첨가제는 실리콘 기반 음극과 니켈 리치 양극의 저온, 상온 및 고온에서의 가역성을 증대시켜 배터리 충방전 횟수 증가에 따른 급격한 용량 감소 문제를 해결할 수 있는 새로운 기술이다.

< 그림 1. 고용량 전극 계면을 보호하는 APFS 첨가제의 디자인 모식도 >
연구팀은 전해질 첨가제 설계 초기 단계부터 타겟으로 하는 양극과 음극에 적합한 작용기를 분자공학적 기법으로 조합하여 첨가제를 디자인하고 합성하는데 성공하였다. 디자인된 전해질 첨가제는 전자 수용 및 전자 공여 그룹의 전기화학적 반응에 의해 고용량 실리콘 기반 음극 및 니켈 리치 양극 표면에 고체전해질 계면막을 형성해 전지의 상온 및 고온 수명을 획기적으로 끌어올리는 데 성공했다.
개발 기술은 일반적인 실험실 수준이 아닌 기업에서 요구하는 수준의 높은 합재밀도를 가진 실리콘 기반 음극과 니켈 리치 양극을 사용하여 배터리의 저온, 상온 및 고온 장수명을 실현하였다는 점과 저비용으로 극대화된 효율을 낼 수 있는 전해질 첨가제 디자인의 방향성을 제시하였다는 점에서 그 의미가 크다.

< 그림 2. APFS 전해액 첨가제 도입 유무에 따른 실리콘 기반 음극니켈리치 양극 풀 셀의 화성 충방전 미분용량(dQdV) vs. 전압 그래프 >
이번 논문의 공동 제1 저자인 KAIST 생명화학공학과 문현규 연구원은 "개발된 전해질 첨가제는 내열성과 유연성이 우수한 전극 계면 층을 형성하여 전기차 구동 온도 45도에서 실리콘 기반 음극과 니켈 리치 양극으로 구성된 전지의 반복적인 300회 충방전 후에도 초기 용량의 72.5%를 발현가능했으며, 이는 기존에 사용되고 있는 첨가제인 비닐렌 카보네이트(VC), 플루오르에틸렌 카보네이트(FEC) 대비 각각 54%, 38% 향상된 수준이었다. 또한, 실리콘 음극 부피변화에 따른 전지 열화를 억제하여 희박 전해질 조건에서도 효과가 있었다ˮ 라고 말했다.
최남순 교수는 “이번 성과는 기존 상용 첨가제들(VC, FEC)의 한계를 극복할 수 있는 전해질 첨가제 기술로, 물질 구조 디자인, 합성 및 계산화학을 통해 연구시간 및 비용을 줄이고 타겟 양극 및 음극 특성에 적합한 첨가제를 정확하게 개발해 내는 새로운 방향을 제시했다”라고 연구의 의미를 강조했다. 뿐만 아니라 양산 수준의 전극 로딩 조건에서 저온에서부터 고온에 이르기까지 온도 내구성이 뛰어난 전극 계면 층을 형성하는 세계 최고 수준의 전해질 첨가제 기술로서 전기차 배터리 등에 활용이 기대된다고 밝혔다.

< 그림 3. 전해액 첨가제 도입 유무에 따른 SiG-CNCM811 풀 셀 수명성능 그래프. >
이번 연구에서 KAIST 최남순 교수와 문현규, 남희범(現 현대자동차 연구원) 연구원은 전해질 시스템 개발과 실험적 원리 규명을 담당하였다. UNIST 홍성유 교수와 김민평, 전민호(現 한국화학연구원 연구원) 연구원은 디자인된 첨가제를 쉽게 얻는 합성법을 개발하였다. 고려대학교 곽상규 교수와 이승민, 김형준 연구원은 계산화학 시뮬레이션을 통해 음극 및 양극에서의 전해질 첨가제의 계면 층 형성 과정을 이론적으로 규명하였다.

< 그림 4. (상단) VC와 APFS 첨가제가 공분해하여 형성하는 고분자 기반 SEI 성분인 벤젠-에테르 작용기는 SEI의 공간적 유연성 향상에 기여함. >
한편 이번 연구는 저명한 국제 학술지 `어드밴스트 펑셔널 머터리얼즈 (Advanced Functional Materials)'에 4월 4일 字로 온라인 공개됐다 (논문명 : Elastic Interfacial Layer Enabled the High-Temperature Performance of Lithium-Ion Batteries via Utilization of Synthetic Fluorosulfate Additive).
이번 연구 수행은 현대자동차의 지원을 받아 수행됐다.
리튬메탈전지는 기존 리튬이온전지를 대체할 차세대 고에너지 전지로 주목받고 있다. 하지만 불이 잘 붙는 액체 전해질을 사용할 경우 화재 위험이 높아 상용화가 어려웠다. 이를 해결하기 위한 대안으로 유연성을 가진 ‘유기 고체 전해질’이 제시되었으나, 상온에서 리튬 이온의 전달 속도가 느려 실용화에 한계가 있었다. 한국 연구진이 리튬 이온 이동성 100배 향상시키고 상온에서 작동하는 고체 전해질을 개발하는데 성공했다. 우리 대학은 28일, 화학과 변혜령 교수 연구팀이 서울대학교 손창윤 교수팀과 공동으로 상온에서도 안정적으로 작동하는 새로운 유기 고체 전해질 필름을 개발했다고 4일 밝혔다. 연구팀은 구멍이 일정하게 배열된 다공성 구조의 ‘공유결합유기골격구조체(COF, Covalent Organic Framework)’라는 신소재를 이용해 머리카락 굵기의 약 1/5수준(두께 약 20μm)의 고체 전해질을 제작했다. 이번에 개발된 COF
2025-11-04우리 대학 기계공학과(반도체시스템공학과 겸임) 김정원 교수 연구팀이 광주파수빗(optical frequency comb)을 색수차 공초점 및 분광 간섭계 기술과 결합해, 반도체 소자 후면에서 실리콘을 투과하여 내부 구조를 비파괴적으로 측정할 수 있는 새로운 광학 검사 기술을 개발했다. 최형수 박사과정이 제1저자로 참여하고 삼성전자 메모리사업부 계측기술팀과의 산학협력으로 수행된 이번 연구는 국제학술지 Light: Advanced Manufacturing 10월 29일 字에 게재됐다. (논문명: Backside illumination-enabled metrology and inspection inside 3D-ICs using frequency comb-based chromatic confocal and spectral interferometry) 최근 인공지능(AI)과 클라우드 컴퓨팅의 급성장으로 고성능·고효율 반도체 수요가 폭발적으로 증가하면서, 여러 칩을
2025-10-31우리 대학 차세대 유망 나노 소재의 최신 연구 동향을 알아보고 비전을 전망하는 ‘제6회 KAIST 이머징 소재 심포지엄(Emerging Materials Symposium)’을 26일 대전 본원 메타융합관(W13)에서 개최한다고 22일 밝혔다. 이 심포지엄은 2020년 시작해 올해로 6회째를 맞으며, 차세대 소재 분야 세계적 석학들을 초청해 혁신 성과를 공유하는 KAIST 대표 학술 행사로 자리매김했다. 8월 26일 대전 본원에서 열리는 이번 행사에는 해외 저명 4개 대학(매사추세츠 공과대학, 예일대학, UCLA, 드렉셀대학)의 연사 6인을 초청해 전 세계 최전선의 이머징 소재 연구 동향을 한눈에 파악하고, KAIST의 대표 연구 성과를 공유하는 의미 있는 자리가 될 것으로 기대된다. 대표적으로, 높은 전기전도도와 전자파 차폐 능력을 갖춘 미래 소재로 주목받는 맥신(MXene)의 최초 개발로 세계적인 명성을 얻은 드렉셀대학의 유리 고고치(Yury Go
2025-08-22우리 대학은 22일 대전 본원에서 글로벌 영상보안 전문기업 아이디스(IDIS, 회장 김영달)와 ‘KAIST-아이디스 실리콘밸리 창업 캠퍼스 구축’을 위한 업무협약을 체결한다. 이번 협약은 실리콘밸리에 ‘KAIST 실리콘밸리 아이디스 캠퍼스’를 조성하고, 이를 거점으로 세계 수준의 창업 교육과 기업 현장 체험 기회를 제공하기 위한 것이다. 이를 통해 KAIST는 글로벌 창업 혁신 인재 양성에 박차를 가할 계획이다. 우리 대학은 2022년 뉴욕대학교(NYU)와 공동으로 ‘KAIST NYU 조인트 캠퍼스’를 설립하고, 인공지능(AI), 신경과학, 데이터 과학 등 첨단 융합 분야에서의 공동 학위과정과 연구 협력을 이어오고 있다. 이번 실리콘밸리 캠퍼스 구축은 동부 뉴욕대 중심의 첨단 연구 협력에 이어, 서부 실리콘밸리의 창업생태계까지 아우를 수 있다는 점에서 KAIST의 포괄적 글로벌 전략을 보여주는 의미있는 행보로
2025-04-22전기차(EV) 시장의 성장과 함께 리튬이온 배터리의 충전 시간을 단축하는 기술이 중요한 과제로 떠오르고 있다. 우리 연구진이 충전 속도가 상대적으로 느린 전기차 리튬 배터리의 혁신적 전해질 기술을 개발하여 충전 시간을 15분으로 단축시키는데 성공했다. 우리 대학생명화학공학과 최남순 교수 연구팀이 신소재공학과 홍승범 교수 연구팀과 협력 연구를 통해 새로운 전해질 용매 ‘아이소부티로니트릴(isoBN)’을 개발하여 배터리내 리튬 이온 이동을 극대화시키는 전략으로 전기차 배터리의 충전 시간이 상온에서 15분 내로 가능한 기술을 개발했다고 17일 밝혔다. 연구팀은 전해질 내에서 용매화(Solvation) 구조를 조절하는 전략을 개발했다. 이는 배터리의 핵심 요소인 음극 계면층(SEI, Solid Electrolyte Interphase)의 형성을 최적화하여 리튬이온 이동을 원활하게 하고, 고속 충전 시 발생하는 문제(리튬 전착, 배터리 수명 단축 등)를 해
2025-03-17