
< (왼쪽부터) 전기및전자공학부 손효준 박사과정, 김동준 교수 >
최근 인공지능, 빅데이터, 생명과학 등 연구에 사용되는 메모리 대역폭이 차지하는 비중이 높아, 메모리 내부에 연산장치를 배치하는 프로세싱-인-메모리(Processing-in-Memory, 이하 PIM) 반도체에 대한 연구개발이 활발히 진행되고 있다. 국제 공동 연구진이 기존의 PIM 반도체가 내부장치를 활용하면서도 통신을 할때 반드시 PIM 반도체 외부로 연결되는 CPU를 통해야한다는 문제점으로 발생한 병목현상을 해결했다.
우리 대학 전기및전자공학부 김동준 교수 연구팀이 미국 노스이스턴 대학(Northeastern Univ.), 보스턴 대학(Boston Univ.)와 스페인 무르시아 대학(Universidad de Murcia)의 저명 연구진과‘PIM 반도체 간 집합 통신에 특화된 인터커넥션 네트워크 아키텍처’를 통한 공동연구로 PIM 반도체의 통신 성능을 비약적으로 향상하는 기법을 개발했다고 19일 밝혔다.
김동준 교수 연구팀은 기존 PIM 반도체가 갖는 메모리 내부 연산 장치 간 통신 구조의 한계를 밝히고, 기존에 메모리 내부에 존재하는 데이터 이동을 위한 버스 구조를 최대한 활용하면서 각 연산장치를 직접적으로 상호 연결하는 *인터커넥션 네트워크 구조를 적용함으로써 PIM 반도체의 통신 성능을 극대화하는 기법을 제안했다.
※ 인터커넥션 네트워크(interconnection network): 다중 연산 장치를 포함하는 대규모 시스템 설계에 쓰이는 연산 장치 간 연결 구조를 말한다. 인터커넥션 네트워크는 다중 연산 장치를 포함하는 시스템 설계의 필수 요소 중 하나로써 시스템 규모가 커질수록 더욱 중요해지는 특징이 있다.
이를 통해 PIM 반도체를 위한 연산 과정에서 통신 처리를 위한 CPU의 개입을 최소화해 PIM 반도체 시스템의 전체적인 성능과 활용성을 높인 PIM 반도체에 특화된 인터커넥션 네트워크 구조를 개발했다.
메모리 공정은 복잡한 로직의 추가가 어렵다는 문제점이 있는데 김동준 교수팀이 개발한 네트워크 구조는 PIM에서 비용 효율적인 인터커넥트를 구현했다.
이 구조는 병렬 컴퓨팅과 기계학습 분야에서 널리 활용되는 집합 통신(Collective communication) 패턴에 특화돼 있으며, 각 연산장치의 통신량과 데이터 이동 경로를 미리 파악할 수 있다는 집합 통신의 결정성(determinism) 특징을 활용해 기존 네트워크에서 비용을 발생시키는 주요 구성 요소들을 최소화시켰다.
기존 PIM 반도체들이 통신하기 위해서는 CPU를 거쳐야만 하기 때문에 상당한 성능 손실이 있었다. 하지만, 연구팀은 PIM 특화 인터커넥션 네트워크를 적용하면 기존 시스템 대비 어플리케이션 성능을 최대 11배 향상했다고 밝혔다. 그 이유는 PIM 반도체의 내부 메모리 대역폭 활용률을 극대화하고 PIM 메모리 시스템의 규모가 커짐에 따라 통신 성능의 확장성이 함께 증가했기 때문이다.
최근 미국 전기전자공학회(IEEE) 컴퓨터 아키텍쳐 분야에서는 한국 최초로 2025 IEEE 펠로우(석학회원)로 선임되었고 이 연구를 주도한 김동준 교수는 “데이터 이동(data movement)을 줄이는 것은 PIM을 포함한 모든 시스템 반도체에서 핵심적인 요소이며, PIM은 컴퓨팅 시스템의 성능과 효율성을 향상할 수 있지만 PIM 연산장치 간 데이터 이동으로 인해 성능 확장성이 제약될 수 있어 응용 분야가 제한적이고, PIM 인터커넥트가 이에 대한 해법이 될 수 있다”고 연구의 의의를 설명했다.

< 그림 1. KAIST 김동준 교수 연구팀이 제안하는 PIM 특화 인터커넥트를 적용한 PIM 연산장치 간 통신 개념도 >
전기및전자공학부 손효준 박사과정이 제1 저자로 참여한 이번 연구는 미국 네바다주 라스베이거스에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 ‘2025 IEEE International Symposium on High Performance Computer Architecture, HPCA 2025’에서 올 3월에 발표될 예정이다. (논문명: PIMnet: A Domain-Specific Network for Efficient Collective Communication in Scalable PIM)
한편 이번 연구는 한국연구재단, 삼성전자, 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
최근 발생한 SKT 해킹 사고와 KT 소액 결제 사건은 이동통신 보안의 중요성을 더욱 강조하고 있다. 휴대폰이나 IoT 기기가 기지국(무선)과 연결되면, 그 신호를 받아서 사용자의 정체 확인, 인터넷 연결, 전화·문자·요금 처리, 다른 사용자와의 데이터 전달 등을 담당하는 것이 ‘LTE 코어 네트워크’다. KAIST 연구진이 LTE 코어 네트워크에 인증되지 않은 공격자가 원격으로 정상 사용자의 내부 정보를 조작할 수 있는 새로운 보안 취약점을 세계 최초로 규명했다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 LTE 코어 네트워크에서 인증되지 않은 공격자가 원격으로 다른 사용자의 내부 상태 정보를 조작할 수 있는 심각한 보안 취약점을 발견했다고 2일 밝혔다. 김용대 교수 연구팀은 LTE 코어 네트워크에서‘컨텍스트 무결성 침해(Context Integrity Violation, CIV)’라는 새로운 취약점
2025-11-03기존에는 세포의 한 가지 자극-반응에 따라 유전자 네트워크를 조절하는 방식의 제어 연구가 이루어졌으나, 최근에는 복잡한 유전자 네트워크를 정밀 분석해 제어 타겟을 찾는 연구가 제안되고 있다. 우리 연구진이 세포의 변형된 유전자 네트워크에 적용해 유전자 제어 타겟을 찾아 회복시키는 범용 기술 개발에 성공했다. 이번 연구 성과는 암 가역화와 같은 새로운 항암치료법 및 신약 개발, 정밀의료, 세포치료를 위한 리프로그래밍 등 폭넓게 활용될 것으로 기대된다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대수적 접근법을 활용해 변형된 세포의 자극-반응 양상을 정상으로 회복시킬 수 있는 유전자 제어 타겟을 체계적으로 발굴하는 기술을 개발했다고 28일 밝혔다. 대수적 접근법은 유전자 네트워크를 수학 방정식으로 표현한 뒤 대수 계산을 통해 제어 타겟을 찾아내는 방식이다. 연구팀은 세포 속 유전자들이 서로 얽혀 조절하는 복잡한 관계를 하나의 ‘논리 회로도(불리언 네트워크, B
2025-08-28암 치료의 큰 걸림돌 중 하나는 항암제에 대한 암세포의 내성이다. 기존에는 내성 암세포를 제거할 수 있는 새로운 표적을 찾는 방식이 주를 이뤘지만, 오히려 더 강한 내성을 유도할 수 있다는 한계가 있었다. 이에 우리 연구진이 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 자동으로 예측하는 컴퓨터 기반 방법론을 개발했다. 이 기술은 다양한 암 치료뿐 아니라 당뇨병 등 난치성 대사 질환에도 활용될 수 있어 주목된다. 우리 대학 생명화학공학과 김현욱 교수와 김유식 교수 연구팀이 인체 대사를 시뮬레이션할 수 있는 컴퓨터 모델인 대사 네트워크 모델을 활용해, 항암제에 내성을 가진 유방암 세포를 약물에 민감화시킬 수 있는 새로운 약물 표적을 예측하는 컴퓨터 기반 방법론을 개발했다고 7일 밝혔다. 연구진은 암세포의 대사 변형이 약물 내성 형성에 관여하는 주요한 특징으로 주목하고, 항암제 내성 유방암 세포의 대사를 조절해 약물 반응성을 높일 유전자 표적을 예측하는 대사
2025-07-07지금까지 다양한 항암 치료 기술이 개발됐음에도 현재 시행되고 있는 모든 항암치료의 공통점은 암세포를 사멸시켜서 치료하는 것을 목표로 하고 있다. 이로 인해 암세포가 내성을 획득해 재발하거나 정상세포까지 사멸시켜 큰 부작용을 유발하는 등 근본적인 한계를 지니고 있다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암세포를 죽이지 않고 그 상태만을 변환시켜 정상 대장세포와 유사한 상태로 되돌림으로써 부작용 없이 치료할 수 있는 대장암 가역 치료를 위한 원천기술을 개발하였다고 22일 밝혔다. 연구팀은 정상세포의 암화 과정에서 정상적인 세포분화 궤적을 역행한다는 관찰 결과에 주목하고, 이를 기반으로 정상세포의 분화궤적에 대한 유전자네트워크의 디지털트윈을 제작하는 기술을 개발했다. 그리고 이를 시뮬레이션 분석해 정상세포 분화를 유도하는 마스터 분자스위치를 체계적으로 탐색해 발굴한 뒤 대장암세포에 적용했을 때 대장암세포의 상태가 정상화된다는 것을 분자세포 실험과 동물실험
2024-12-23지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다. 조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델
2024-06-03