< (왼쪽부터) 전산학부 이진서 박사과정, 김호빈 석사 졸업생, 강민석 교수 >
우리 연구진이 세계 최대 익명 네트워크 ‘토르(Tor)’의 보안 취약점을 규명하고 해결책까지 제시함으로써, 국내 연구진으로서는 처음으로 글로벌 보안 연구의 새로운 이정표를 세웠다.
우리 대학 전산학부 강민석 교수 연구팀이 지난 8월 13일부터 15일까지 미국 시애틀에서 열린 유즈닉스 보안 학술대회(USENIX Security 2025)에서 우수논문상(Honorable Mention Award)을 수상했다고 12일 밝혔다.
유즈닉스 보안 학술대회는 정보보안 분야 세계 최고 권위 학회로, 구글 스칼라 h-5 인덱스 기준 보안·암호학 분야 전체 학술대회 및 저널 가운데 1위를 차지하고 있다. 우수논문상은 전체 논문 중 약 6%에만 주어지는 영예다.
이번 연구는 세계 최대 익명 네트워크인 ‘토르(Tor)’에서 발생할 수 있는 새로운 서비스 거부(DoS) 공격 취약점을 발견하고, 이를 해결하기 위한 방법을 제시한 것이 핵심이다. 토르 익명 웹사이트(Tor Onion Service)는 익명성을 기반으로 하는 다양한 서비스의 핵심 기술로, 전세계적으로 매일 수백만명의 사용자가 이용하는 대표적인 프라이버시 보호 수단이다.
연구팀은 토르의 혼잡도 인식 방식이 안전하지 않음을 밝혀냈으며, 실제 네트워크 실험을 통해 단 2달러의 비용으로 웹사이트를 마비시킬 수 있음을 입증했다. 이는 기존 공격 대비 0.2% 수준의 비용이다. 특히 기존 토르에 구현된 서비스 거부(DoS) 공격에 대한 보안 기법이 오히려 공격을 더욱 악화시킬 수 있음을 최초로 규명했다는 점에서 주목 받았다.
또한 연구팀은 수학적 모델링을 통해 해당 취약점이 발생하는 원리를 규명하고, 토르가 익명성과 이용가능성 사이에서 균형을 유지할 수 있는 가이드라인을 제시했다. 이 가이드라인은 토르 개발진에 전달되어 현재 점진적으로 패치를 적용 중이다.

< 연구팀이 제안한 새로운 공격 모식도: 공격자가 미리 설계한 극미량의 공격 트래픽을 토르 내 웹사이트에 전송하면, 혼잡 측정 시스템이 교란되어 과도한 혼잡 제어가 촉발되고, 이는 결국 일반 사용자의 웹사이트 접근 불가로 이어진다. 연구팀은 실험을 통해 이 공격의 비용이 기존의 0.2% 수준임을 입증했다. >
앞서 지난 2월 토르 창립자 로저 딩글다인(Roger Dingledine)이 KAIST를 방문해 연구팀과 협력 논의를 진행했으며, 토르 운영진은 연구팀의 선제적 제보에 감사의 뜻으로 지난 6월 약 800달러 상당의 버그 현상금을 지급했다.
강민석 교수는 “토르 익명성 시스템 보안은 세계적으로 활발히 연구되고 있지만, 국내에서는 이번이 최초의 보안 취약점 연구 사례라는 점에서 큰 의미가 있다”며, “이번에 확인된 취약점은 위험도가 매우 높아 학회 현장에서 다수의 토르 보안 연구자들의 큰 주목을 받았다. 앞으로는 토르 시스템의 익명성 강화뿐 아니라 토르 기술을 활용한 범죄 수사 분야까지 아우르는 종합적 연구를 이어가겠다”고 덧붙였다.
이번 연구는 이진서 박사과정(제1저자), 김호빈 연구원(제2저자, KAIST 정보보호대학원 석사 졸업·現 미국 카네기멜런대 박사과정)가 진행했다.
※논문 제목: Onions Got Puzzled: On the Challenges of Mitigating Denial-of-Service Problems in Tor Onion Services
※논문 정보: https://www.usenix.org/conference/usenixsecurity25/presentation/lee
이번 성과는 국내 최초의 선도적인 토르 보안 취약점 연구로 인정받아, 강 교수 연구실이 2025년 과학기술정보통신부 기초연구사업(글로벌 기초연구실)에 선정되는 데 결정적인 역할을 했다.

< 사진 2. 이진서 전산학부 박사과정 발표 사진 >
연구팀은 이 사업을 통해 이화여자대학교, 성신여자대학교와 국내 연구 협력체계를 구축하고, 미국·영국 연구자들과 국제 연구 협력을 확대해 향후 3년간 토르 취약점 및 익명성 관련 심화 연구를 수행할 계획이다.

< 사진 3. 이진서 전산학부 박사과정 발표 사진 >
우리가 먹는 비타민 B2(리보플라빈)는 음식이 몸속에서 에너지로 바뀌도록 돕는 중요한 보조효소 역할을 한다. 한국 연구진이 이 리보플라빈(플라빈)에 금속을 결합해, 전자를 전달하는 리보플라빈의 기능에 금속의 반응 조절 능력을 더한 새로운 인공 효소를 만드는 데 세계 최초로 성공했다. 이 기술은 자연 효소보다 더 정밀하고 안정적으로 작동해, 에너지 생산과 환경 정화, 신약 개발 등 다양한 분야에 활용될 가능성을 보여준다. 우리 대학 화학과 백윤정 교수 연구팀이 기초과학연구원(IBS 원장 노도영) 권성연 박사와 공동연구를 통해, 플라빈이 금속 이온과 결합할 수 있는 새로운 분자 시스템을 합성하는 데 성공했다고 11일 밝혔다. 그동안 플라빈은 질소와 산소가 복잡하게 얽힌 고리 구조를 가져 금속이 선택적으로 결합하기 어려운 구조적 한계가 있어, 과학자들은 오랫동안 ‘금속과 결합한 플라빈’을 구현하지 못했다. 연구팀은 이러한 한계를 극복하기 위해 플라빈 내에서
2025-11-11우리 대학 원자력및양자공학과 박상후 교수가 세계적으로 권위 있는 두 플라즈마 학술대회에서 잇달아 신진연구자상을 수상했다고 15일 밝혔다. 박 교수는 지난 8월 4일 미국물리학회(American Physical Society)가 주관하는 플라즈마 학술대회(Gaseous Electronics Conference, GEC)의 신인연구자상(Early Career Award, ECA) 수상자로 선정됐다. 또한 지난 6월 19일에는 국제플라즈마화학회(International Plasma Chemistry Society, IPCS)가 수여하는 신인연구자상(Young Investigator Award)의 수상 영예를 안았다. 미국물리학회 GEC 신진연구자상은 전 세계에서 2년마다 단 한 명에게만 주어지는 상으로, 플라즈마 분야에서의 연구 우수성·학문적 영향력·학회 기여도를 종합적으로 평가해 수여된다. 이번 시상은 오는 10월 13~17일 서울 코엑스에서 열리는
2025-08-15스마트폰은 언제 어디서나 이동통신 네트워크에 연결돼 있어야 작동한다. 이러한 상시 연결성을 가능하게 하는 핵심 부품은 단말기 내부의 통신 모뎀(Baseband)이다. KAIST 연구진이 자체 개발한‘LLFuzz(Lower Layer Fuzz)’라는 테스트 프레임워크를 통해, 스마트폰 통신 모뎀 하위계층의 보안 취약점을 발견하고‘이동통신 모뎀 보안 테스팅’의 표준화* 필요성을 입증했다. *표준화: 이동통신은 정상적인 상황에서 정상 동작을 확인하는 정합성 테스팅(Conformance Test)이 표준화되어 있으나, 비상적인 패킷을 처리한 것에 대한 표준은 아직 만들어지지 않아서 보안 테스팅의 표준화가 필요함 우리 대학 전기및전자공학부 김용대 교수팀이 경희대 박철준 교수팀과 공동연구를 통해, 스마트폰의 통신 모뎀 하위 계층에서 단 하나의 조작된 무선 패킷(네트워크의 데이터 전송 단위)만으로도 스마트폰의 통신을 마비시킬 수 있는 심각한 보
2025-07-25‘제2의 반도체’로 불리는 리튬이온 전지(LIB)는 가장 높은 시장 점유율로 에너지 저장 장치 시장을 주도하고 있지만, 화재에 취약하는 약점을 가지고 있다. 한국 연구진이 화재로부터 안전하고 값이 저렴한 아연 금속과 공기중의 산소로 구동되는 고에너지 밀도를 가진 고출력 차세대 전지를 개발했다. 우리 대학 신소재공학과 강정구 교수 연구팀이 연세대 한병찬 교수 연구팀, 경북대 최상일 교수 연구팀 및 성균관대 정형모 교수 연구팀과의 공동연구를 통해, 인공지능 기반 이종기능* 전기화학 촉매를 개발 및 촉매 활성 메커니즘을 규명하고, 고효율 아연-공기 전지를 개발했다고 4일 밝혔다. *이종기능: 충전(Charging) 동안에서의 산소 발생(OER) 기능과 방전(Discharging) 동안의 산소 환원 (ORR) 기능 최근 활발하게 연구가 진행되고 있는 아연-공기 전지 배터리의 음극에 사용되는 아연 금속과 공기극*에 필요한 공기는 자연에 풍부하다는 특성 때문에
2025-03-04전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다. 최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다. 배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체
2024-11-05