
< (윗줄 왼쪽부터) 양용수 교수, 조은애 교수, 정채화 박사, (아랫줄 왼쪽부터) 이주혁 박사, 조혜성 박사, 이광호 연구원 >
수소전기차의 핵심인 연료전지 작동 중 촉매의 ‘열화 과정(어떻게 망가지고 성능이 떨어지는지)’을 우리 연구진이 국제연구진과 함께 세계 최초로 원자 단위에서 3차원으로 직접 추적하는 데 성공했다. 이번 성과는 고성능·고내구성 연료전지 개발을 앞당겨 미래 친환경 교통수단과 에너지 전환에 크게 기여할 것으로 기대된다.
우리 대학 물리학과 양용수 교수와 신소재공학과 조은애 교수 공동연구팀이 미국 스탠퍼드대학교, 로런스 버클리 국립연구소와의 국제 공동연구를 통해 연료전지 촉매 내부의 원자 하나하나가 수천 번의 작동 사이클 동안 어떻게 움직이고, 어떤 방식으로 성능이 저하되는지를 3차원으로 직접 추적하는 데 성공했다고 14일 밝혔다.
수소연료전지는 탄소배출이 없는 차세대 친환경 에너지 기술로 주목받고 있다. 그러나 촉매로 사용되는 백금(Pt) 기반 합금은 주행 과정에서 성능이 점차 저하되는 ‘열화 현상’이 발생해 상용화의 걸림돌이 되어 왔다. 열화의 근본 원인을 규명하지 못하면 연료전지 교체 주기가 짧아지고 수소차 가격 인하에도 한계가 있었다.
연구팀은 이 문제를 해결하기 위해, 원자 하나하나의 3차원 움직임을 직접 볼 수 있는 인공신경망 기반 원자 전자 단층촬영 기법을 개발했다.
병원에서 사용하는 CT 단층촬영법이 여러 각도에서 X선 영상을 찍어 인체 내부를 3차원으로 보여주는 것과 마찬가지로, 연구팀은 전자현미경을 이용해 다양한 각도에서 고해상도 이미지를 촬영하고, 이를 인공지능 신경망과 결합해 나노 촉매 내부 원자들의 3차원 위치를 정밀하게 재구성했다.

< 갈륨(Ga) 도핑된 백금-니켈(PtNi) 촉매 나노입자의 3차원 원자 구조 및 촉매 활성 변화. 위쪽은 초기 상태(Pristine)부터 12,000회 전기화학적 구동(cycling) 후까지의 원자 구조 변화를 보여준다(파란색: 백금, 분홍색: 니켈). 아래쪽은 각 단계에서 산소환원반응(ORR) 촉매 활성도를 색으로 표시한 결과이며, 붉은색이 높은 활성을 의미한다. Ga 도핑을 통해 입자의 팔면체 구조와 고활성 면({111} facet)가 장기간 안정적으로 유지되며, 반복 구동 후에도 높은 촉매 성능이 보존됨을 확인할 수 있다. >
그 결과, 수천 개에 달하는 원자들이 연료전지 작동 과정에서 어떻게 이동하고 변형되는지를 마치 눈으로 들여다보듯 생생하게 관찰할 수 있게 됐다.
연구팀은 백금-니켈(이하 PtNi) 합금 나노입자에 대해 수천 번의 전기화학적 작동을 가한 후, 각 단계에서 촉매 입자의 3차원 원자구조를 분석했다. 그 결과, 일반적인 PtNi 입자에서는 시간이 지남에 따라 입자 형태가 변형되고, 니켈이 빠져나가고, 제 기능을 점차 잃어버리는 현상이 나타났다.
반면 갈륨 원소를 조금 섞어준 촉매 입자에서는 이러한 변화가 거의 없어서 처음부터 성능도 더 뛰어나고, 오래 사용해도 성능을 잘 유지함을 입증했다. 이를 통해 연구팀은 촉매 안에 원자들이 시간이 지나면서 어떻게 변하는지 그리고 그 변화가 성능 저하와 어떤 관계가 있는지를 정량 데이터로 명확하게 규명했다.
양용수 교수는 “이번 연구는 실제 연료전지 촉매의 3차원 열화 과정을 원자 단위에서 정량적으로 추적한 세계 최초 사례로, 실험적으로 관측하기 어려웠던 실제 촉매 표면과 내부의 3차원 원자 구조 변화를 직접 측정했다는 점에서 이론 모델이나 시뮬레이션에 의존했던 기존 연구들과 차별점을 가진다”라고 강조했다.
이어 “고성능·고내구성 연료전지 촉매 설계의 핵심 기반이 될 것이며 또한 AI 기반 정밀 원자구조 분석 기술은 배터리 전극, 메모리 소자 등 다양한 나노소재 연구에도 폭넓게 활용될 것”이라고 전망했다.
이번 연구에는 물리학과 정채화 박사, 이주혁 박사, 조혜성 박사, 신소재공학과 이광호 연구원이 공동 제1저자로 참여했고, 연구 결과는 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications) 8월 28일자에 게재됐다.
※ 논문제목: Atomic-scale 3D structural dynamics and functional degradation of Pt alloy nanocatalysts during the oxygen reduction reaction
※DOI: https://doi.org/10.1038/s41467-025-63448-5
한편, 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 특이점교수사업의 지원을 받았다.
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다. 우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다. 이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다. 연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매
2024-12-04우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다. ☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다. 이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다. 우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연
2021-10-13