
< (왼쪽 위부터) 현보배 박사, 김대수 교수, 이창준 단장, (오른쪽) 허원도 교수 >
모하마드 알리, 마이클 J. 폭스 등 세계적으로 잘 알려진 인물들이 파킨슨병으로 오랜 시간 투병해 왔다. 이 병은 떨림, 강직, 서동, 자세 불안정 등 복합적인 운동 증상이 나타나지만, 기존 검사법으로는 발병 초기 변화를 민감하게 포착하기 어렵고, 뇌 신호 조절을 겨냥한 약물 역시 임상에서 효과가 제한적이었다. 최근 한국 연구진이 AI와 광유전학을 융합한 기술을 통해 파킨슨병의 정밀 진단과 치료 평가 도구로 활용 가능성을 입증하고, 차세대 맞춤형 치료제 개발 전략을 제시하는 데 성공했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 뇌인지과학과 김대수 교수(생명과학기술대학 학장) 연구팀, 기초과학연구원(IBS 원장 노도영) 이창준 단장(인지 및 사회성 연구단) 연구팀과 함께 인공지능(AI) 분석과 광유전학(optogenetics)을 결합해 파킨슨병 동물 모델에서 조기·정밀 진단과 치료 가능성을 동시에 입증하는 전임상 연구 성과를 거두었다고 22일 밝혔다.
연구팀은 두 단계의 중증도를 가진 파킨슨병 생쥐 모델(알파-시누클레인 단백질 이상으로 파킨슨병을 유발한 실험용 수컷 생쥐로, 사람의 파킨슨병을 모사하여 진단·치료 연구에 활용되는 표준 모델)을 구축하고, 뇌인지과학과 김대수 교수 연구팀과의 공동 연구를 통해 인공지능 기반 3D 자세 추정 기술을 행동 분석에 도입했다.
연구팀은 파킨슨병 생쥐의 걸음걸이, 손발 움직임, 떨림 같은 340여 가지 행동 신호를 인공지능으로 분석해 하나의 점수(파킨슨 행동지수)로 만들었습니다. 이 지수를 통해 파킨슨병을 발병 초기부터 기존 검사보다 더 정확하게 구분할 수 있음을 확인했습니다.
분석 결과, 파킨슨 행동지수는 질환 유도 2주 시점부터 대조군 대비 유의한 차이를 보였으며, 기존 운동능력 검사보다 더 민감하게 질환 정도를 판별했다. 예를 들어 보폭 변화, 손발 움직임 비대칭, 흉부 떨림 같은 행동이 파킨슨병 진단의 핵심 요인임을 밝혔다. 따라서 상위 20개 행동 표지에는 손·발 비대칭, 보폭·자세 변화, 흉부 고빈도 성분 증가 등이 포함됐다.
이러한 행동 지표가 단순히 운동 기능 저하를 나타 내는 것인지, 파킨슨병에만 나타나는 특이한 변화인지 확인하기 위해, 연구팀은 IBS 이창준 단장팀과 함께 루게릭병 생쥐 모델에도 같은 분석을 적용했다. 파킨슨병과 루게릭병(ALS) 모두 운동 기능에 문제가 생기는 질환이기에 단순히 운동이 나빠진 것 때문이라면 두 질환 모두에서 높은 파킨슨 행동지수가 나와야 한다.

< 그림 1. 인공지능 (AI) 기반 파킨슨병 진단 및 중증도 평가. 5대의 카메라로 쥐의 움직임을 3D로 재구성하고 (AVATAR 시스템), 총 340개 특징 중 최적 30개를 선택해 파킨슨병 여부와 중증도를 예측하는 AI 모델을 구축함. 중증군에서 파킨슨 점수가 빠르게 상승하고 높은 수준을 유지했으며, 정상·경증군 대비 유의하게 높음. >
분석 결과, 루게릭병(ALS) 동물 모델은 운동 기능이 떨어졌음에도 파킨슨병에서 보였던 높은 파킨슨 행동지수는 나타나지 않았다. 오히려 낮은 수준을 유지했으며, 행동 변화 양상도 파킨슨병과는 확연히 달랐다. 이는 이번에 개발한 파킨슨 행동지수가 단순한 운동 장애가 아니라 파킨슨병에만 나타나는 특징적인 변화와 직접적으로 관련됨을 보여준다.
연구팀은 파킨슨병 치료를 위해서 뇌 신경 세포기능을 빛으로 정밀하게 조절하는 광유전학 기술 ‘옵토렛(optoRET)’을 활용했다.
그 결과, 파킨슨병 동물 모델에서 걷기와 팔다리 움직임이 더 매끄러워지고 떨림 증상이 줄어드는 효과가 확인됐다. 특히 하루 걸러 한 번 빛을 쏘는 방식(격일 주기)이 가장 효과적이었으며, 뇌 속 도파민 신경세포도 보호되는 경향을 보였다.

< 그림 2. 루게릭병 생쥐 운동능력 평가 및 인공지능 기반 파킨슨병 진단. 로타로드 장치를 이용해 가속 회전 환경에서 생쥐의 운동 지속 시간을 측정한 결과, 루게릭병 생쥐는 대조군에 비해 16주령 부터 유의하게 운동능력이 저하함. 인공지능 기반 파킨슨병 점수 분석에서는 두 그룹 간 차이가 없음. >
허원도 석좌교수는 “이번 연구는 인공지능 기반 행동 분석과 광유전학을 결합해 파킨슨병의 조기진단–치료평가–기전검증을 하나로 잇는 전임상 프레임을 세계 최초로 구현했다”라며, “향후 환자 맞춤형 치료제와 정밀의료로 이어질 중요한 토대를 마련했다”고 밝혔다.

< 그림 3. 광유전학을 이용한 파킨슨병 생쥐 모델의 질병 진행 완화 및 세포 사멸 억제 효과. 인공지능 기반 파킨슨병 점수 분석에서, 광치료군은 경증군 대비 점수가 유의하게 낮아 운동장애가 완화됨을 확인함. 사후 면역조직염색에서는 치료군에서 선조체 도파민 말단 밀집도와 흑질 도파민 세포 수가 경증군보다 유의하게 높게 유지됨. >
우리 대학 생명과학연구소 현보배 박사후연구원이 제 1저자인 이번 연구 결과는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications) 온라인판에 8월 21일에 게재됐다. 또한, 현 박사는 보건산업진흥원의 ‘글로벌 의사과학자 양성사업’ 지원으로 하버드 의과대학 맥린병원에서 이번 성과를 기반으로 한 파킨슨병 세포 치료제 고도화 연구를 이어가고 있다.
※논문명: Integrating artificial intelligence and optogenetics for Parkinson's disease diagnosis and therapeutics in male mice
※DOI: https://doi.org/10.1038/s41467-025-63025-w
한편, 이번 연구는 KAIST 글로벌 특이점사업, 과학기술정보통신부·한국연구재단, IBS 인지 및 사회성 연구단, 보건복지부·한국보건산업진흥원 지원으로 수행됐다.
우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다. *분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명 우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의
2025-08-19광유전학 기술은 빛에 반응하는 광 단백질이 발현된 뉴런에 특정 파장의 빛 자극을 통해 뉴런의 활성을 조절하는 기술로 다양한 뇌질환의 원인을 규명하며 난치성 뇌질환의 새로운 치료 방법을 개발할 가능성을 열고 있다. 이 기술은 인체의 뇌에 삽입하여 자극을 주는 의료 기기인 ‘뉴럴 프로브’를 통해 정확하게 자극하고 무른 뇌 조직의 손상을 최소화해야 한다. 이에 우리 연구진이 마이크로 OLED를 활용해 얇고 유연한 인체 삽입형 의료기기로 구현함으로써 뉴럴 프로브의 새로운 패러다임을 제시했다. 우리 대학 전기및전자공학부 최경철 교수와 이현주 연구팀이 공동 연구를 통해, 유연한 마이크로 OLED가 집적된 광유전학용 뉴럴 프로브 개발에 성공했다고 6일 밝혔다. 광유전학 연구에서 주요 기술은 광원의 빛을 뇌로 전달하는 방식으로 외부 광원으로부터의 깊은 뇌 영역까지 빛을 전달하기 위해 수십 년간 광섬유를 사용해 왔다. 하지만 단일 뉴런을 자극하기 위한 유연 광섬유,
2025-07-07파킨슨병(PD)은 알파시누클린(α-synuclein) 단백질이 뇌세포 내에서 비정상적으로 응집되어 신경세포를 손상시키는 퇴행성 신경질환이다. KAIST 연구진은 파킨슨병의 핵심 병리 중 하나인 신경염증 조절에 있어 RNA 편집(RNA editing)이 중요한 역할을 한다는 사실을 세계 최초로 밝혀냈다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 UCL 국립신경전문병원 연구소 및 프랜시스 크릭 연구소와의 공동 연구를 통해, 뇌를 보호하고자 염증 반응을 일으키는 교세포(astrocyte)에 대해 RNA 편집 효소인 에이다원(ADAR1)이 면역 반응을 조절하는 중요한 역할을 한다는 것을 밝혀내고 파킨슨병의 병리 진행에 핵심적인 역할을 한다는 사실을 입증했다. 최민이 교수 연구팀은 뇌 면역세포의 염증반응을 알아보고자 파킨슨 환자에게서 유래한 줄기세포를 이용해 뇌의 신경세포를 돕는 교세포와 신경세포로 구성된 세포 모델을 만들고, 파킨슨병의 원인이 된다고 알려진 알파
2025-04-28우리 뇌에 과도한 기억이 형성되면 극심한 공포와 관련된 기억이 제대로 소멸되지 않아 발생하는 PTSD 같은 정신질환의 원인이 된다고 한다. 우리 연구진이 빛으로 단백질의 활성을 조절하는 광유전학 기술을 개발하고 이를 통해 과도한 기억 형성을 억제해 PTSD의 발생을 줄일 수 있는 가능성을 열어 화제다. 우리 대학 생명과학과 허원도 교수 연구팀이 뇌에서 기억 형성을 조절하는 새로운 메커니즘을 밝혀냈다. 연구팀은 다양한 뇌 신경전달물질들에 의해 활성화되는 대표적인 세포내 신호전달분자효소인 PLCβ1 단백질*에 집중했다. 이번 연구는 기억 형성과 소멸을 조절하는 데 중요한 역할을 하는 단백질(PLCβ1)의 기능을 규명하였으며, PTSD와 같은 과도한 기억 형성에 의한 정신질환의 새로운 분자적 기전을 밝히는데 기여했다. *PLCβ1 단백질: 인산지질 가수분해효소 C 베타 1 우리 뇌는 매일 다양한 경험을 통해 새로운 기억을 형성하고 소멸시킨다. 기억
2024-07-15디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다. *광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술 광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔
2024-04-15