
< (왼쪽부터) 정원석 교수, 박현지 박사과정, 박성완 박사, 정인경 교수 >
사람마다 가지고 있는 유전자 차이가 어릴 때 뇌가 자라나는 과정에서는 크게 문제가 되지 않지만, 나이가 들어서 치매 등 뇌 질환이 생길 때는 왜 어떤 사람이 더 잘 걸리는지 오랫동안 수수께끼였다. 국내 연구진이 최근 뇌 속 별아교세포가 면역 반응을 켜고 끄는 스위치를 지니고 있으며, 이 스위치를 조절하는 핵심유전자를 알아내고 성인이 된 후 뇌 질환에 대한 개인의 취약성을 결정한다는 점을 세계 최초로 밝혀냈다. 향후 알츠하이머병의 퇴행성뇌질환을 포함한 다양한 뇌 면역 반응의 원인 규명과 치료 전략의 중요한 단서를 제공했다.
우리 대학은 생명과학과 정인경 교수와 기초과학연구원(원장 노도영, IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포(astrocyte) 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응 조절에 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다.
연구팀은 쥐 모델을 활용해 뇌·척수에 차지하는 비중이 높은 별아교세포의 발달 시기별 유전자 조절 프로그램을 정밀 분석한 결과, ‘NR3C1(Glucocorticoid Receptor)’ 유전자가 출생 직후 발달 단계에서 장기적 면역 반응 억제의 핵심 조절자임을 밝혀냈다.
연구팀은 최신 ‘3차원 후성유전체 분석 기술(DNA에 유전정보를 커짐·꺼짐분석 기술)’을 적용해 별아교세포 발달 과정에서의 전사체, 염색질 접근성, ‘3차원 게놈 상호작용(DNA가 공간 속에서 어떻게 접히고 서로 만나는지를 보는 기술)’을 통합 분석했다.
그 결과, 별아교세포가 자라나는 과정에서 55개의 중요한 유전자 조절 단백질(전사인자)을 찾아냈다. 그중에서도 NR3C1이라는 유전자가 아기 뇌가 처음 발달할 때 “가장 중요한 스위치” 역할을 한다는 사실을 밝혔다. 흥미로운 점은, 이 유전자가 없다고 해서 어릴 때 뇌 발달이 크게 망가지지는 않았다.

< 모식도는 NR3C1 유전자(글루코코르티코이드 수용체)가 별아교세포의 면역 반응을 어떻게 억제하는지를 보여준다. 정상(Control) 별아교세포에서는 NR3C1이 DNA의 특정 조절 부위(nGRE)에 결합해 면역 관련 유전자들의 발현을 억제함으로써, 면역 자극이 있어도 뇌의 균형이 유지된다. 반면, NR3C1이 제거된 별아교세포(KO)에서는 이러한 억제가 사라져 Gfap, Il6st, Stat2, Cxcl10과 같은 염증 관련 유전자들이 과도하게 활성화된다. 그 결과, 자가면역성 뇌질환 모델(EAE)에서 뚜렷한 신경 염증 악화와 임상 증상(마비 및 심각한 쇠약)이 나타난다. >
하지만 성인이 된 뒤 뇌에 자가면역성 질환(몸의 면역체계가 자기 뇌를 공격하는 병)을 일으키면, NR3C1이 없는 경우 뇌가 과도하게 염증 반응을 일으키고 병이 훨씬 심해졌다.
즉, NR3C1은 아기 뇌에서 “면역 스위치를 미리 켜둘 준비를 하는 엔진 예열 버튼”인 ‘후성유전적 프라이밍* 제어 역할을 하며, 이 덕분에 성인이 된 뒤 뇌가 과도한 면역 반응을 일으키지 않도록 지켜준다는 것을 알아냈다.
*후성유전적 프라이밍(epigenetic priming)유전자가 당장 발현되지 않더라도, 필요할 때 즉시 켜질 수 있게 스위치를 미리 준비해 두는 과정
정원석 IBS 부연구단장(KAIST 생명과학과 교수)은 “별아교세포의 면역 기능이 후성유전적 기억에 의해 조절된다는 사실을 처음 규명했다”며, “향후 알츠하이머병 등 퇴행성 뇌 질환의 원인 규명에 기여할 것”이라고 말했다.
KAIST 생명과학과 정인경 교수는 “이번 연구는 별아교세포 발달의 특정 시기(시간적 조절 창, window of susceptibility)가 성인기와 노인기 뇌 질환의 취약성을 좌우할 수 있음을 보여줬다”며, “게놈 3차원 구조 기반 연구가 다발성경화증(MS) 등 면역성 뇌 질환의 새로운 발병 원리 이해와 치료 전략 개발로 이어질 것”이라고 밝혔다.

< 그림은 특정 유전자 영역에서 별아교세포의 3차원 게놈 구조를 보여주면서, NR3C1이 어떻게 이들 유전자 발현을 조절하는지를 보여준다. 정상 세포에서는 NR3C1이 DNA에 결합해 염색질 구조를 닫힌 상태로 유지하면서 원거리 조절 요소(인핸서)와 유전자 프로모터의 불필요한 활성화를 차단한다. 반면, NR3C1이 결여되면 염색질이 열리고, 인핸서와 유전자가 활성이 쉽게 일어날 수 있는 상태로 바뀌게 된다. 그 결과, Mxi1과 같은 유전자가 과도하게 발현되고 염증 반응이 촉발된다. 이는 NR3C1이 3차원 유전자 조절 기전을 안정적으로 유지해 면역 반응의 항상성 유지에 중요한 역할을 하는 사실을 잘 보여준다. >
이번 연구 결과는 KAIST 생명과학과 박성완 박사와 박현지 박사과정 학생이 제 1저자로 국제 학술지 네이처 커뮤니케이션스(Nature Communications, IF 15.7) 9월 22일자 온라인판에 게재됐다.
※논문명: NR3C1-mediated epigenetic regulation suppresses astrocytic immune responses in mice, DOI: https://www.nature.com/articles/s41467-025-64088-5
또한 저널은 9월 17일, 해당 연구를 소개한 해설 글을 게재했다. https://www.nature.com/articles/s41467-025-64102-w
한편 이번 연구는 서경배과학재단, 보건복지부, 과학기술정보통신부, IBS의 지원을 받아 수행됐다.
우리 몸에 생긴 암세포가 다른 부위로 퍼지는 암 전이나, 상처를 치유하기 위해 면역세포가 이동하는 과정 등 세포의 이동은 생명현상에 꼭 필요한 과정이다. 그러나 그동안 세포가 외부 자극 없이 스스로 이동 방향을 결정하는 원리는 밝혀지지 않았다. 우리 대학과 국제 공동 연구진은 이번 연구를 통해 세포가 스스로 방향을 정해 움직이는 원리를 규명, 향후 암 전이와 면역 질환의 원인을 밝히고 새로운 치료 전략을 세우는 데 중요한 단서를 제시했다. 우리 대학은 생명과학과 허원도 석좌교수 연구팀이 바이오및뇌공학과 조광현 석좌교수 연구팀, 미국 존스홉킨스대 이갑상 교수 연구팀과 공동으로 세포가 외부의 신호 없이도 스스로 이동 방향을 결정하는 ‘자율주행 메커니즘’을 세계 최초로 규명했다고 10일 밝혔다. 연구팀은 살아있는 세포 안에서 단백질들이 서로 어떻게 상호작용하는지를 눈으로 직접 볼 수 있는 새로운 이미징 기술 ‘INSPECT(INtracellular
2025-11-10“바이러스를 없애야 할 면역세포가, 왜 갑자기 우리 몸을 공격할까?” 바이러스에 감염된 세포만 정밀하게 제거해야 하는 ‘킬러 T세포’가 때로는 과열된 엔진처럼 정상 세포까지 파괴해 오히려 우리 몸에 손상을 입히는 현상이 있다. 우리 대학 연구진이 이처럼 폭주하는 킬러 T세포의 활성화 과정을 제어할 수 있는 핵심 원리를 규명하며, 향후 면역 과잉 반응을 조절하고 면역질환 치료제 개발의 실마리를 제시했다. 우리 대학은 의과학대학원 신의철·박수형 교수 연구팀이 충남대 의대 은혁수 교수와 공동연구를 통해, 킬러 T세포의 ‘비특이적 활성화’가 일어나는 분자적 원인을 규명하고, 이를 조절할 수 있는 새로운 치료 전략을 제시했다고 5일 밝혔다. 킬러 T세포(CD8+ T세포)는 감염된 세포만 선별적으로 제거해 바이러스 확산을 억제하지만, 반응이 과도해지면 감염되지 않은 정상 세포까지 공격하여 염증과 조직 손상을
2025-11-05우리 대학 생명과학과 이흥규 교수가 대한면역학회 주최 KAI2025 국제학술대회에서 학술대상(Grand Achievement Award)을 수상했다. 이흥규 교수는 치료가 어려운 뇌종양의 면역세포 작용 기전을 규명하고, 면역관문억제제의 치료 효능을 향상시킬 수 있는 새로운 면역 타깃 전략을 제시해 왔다. 특히, 식이 변화에 따른 장내 미생물 구성의 변화가 뇌종양의 면역 조절에 미치는 영향을 규명하여, 장–면역–뇌(Gut–Immune–Brain) 축(axis)이라는 새로운 개념적 기전을 제시함으로써 국내외 학계의 주목을 받았다. 또한 이 교수는 면역관문치료제의 효과를 극대화할 수 있는 면역세포 조절 메커니즘을 밝혀냄으로써, 차세대 뇌종양 면역치료제 개발의 새로운 방향을 제시했다는 평가를 받았다. 이 교수는 이번 학술대상 상금 3천만 원 전액을 대한면역학회에 기부하며, 이를 면역학 분야 우수 박사학위논문상 신설에 사용해 학문 후속세대
2025-10-29우리 대학 바이오및뇌공학과 박성홍 교수 연구실(연구실명: 자기공명영상 연구실, Magnetic Resonance Imaging Laboratory)이 MICCAI 국제학회의 TopBrain 뇌 혈관 Segmentation Challenge에서 1등상을 수상했다. MICCAI의 TopBrain Challenge는 뇌혈관을 가장 정확히 구획화(Segmentation)하는 딥러닝 네트워크 개발을 놓고 매년 전세계적으로 경쟁하는 대회로서 올해로 3회째를 맞고 있다. 이전 두 대회는 TopCoW라는 이름으로 대뇌동맥고리(circle of willis) 영역 구획화로만 치러졌고, 올해 처음 TopBrain이라는 이름으로 뇌 전체 혈관 구획화로 확장되었다. MICCAI (Medical Image Computing and Computer Assisted Intervention)는 매년 전세계 의료영상연구자들의 모임으로써 올해는 대전 convention center (DCC)에서 전세계 3천명
2025-10-13우리 대학은 의과학대학원 이정호 교수의 교원 창업기업인 소바젠(각자대표 박철원·이정호)이 난치성 뇌전증을 치료하기 위한 혁신적인 RNA 신약 후보를 개발해, 총 7,500억 원 규모의 글로벌 기술 수출에 성공했다고 9일 밝혔다. 이번 성과는 KAIST의 기초 의과학 연구에서 출발한 혁신적 발견이 실제 신약 개발과 세계 시장 진출로 이어진 대표적 사례로 주목받고 있다. 이정호 교수 연구팀은 난치성 뇌전증과 악성 뇌종양 같은 치명적 뇌 질환의 원인이‘뇌 줄기세포에서 생긴 후천적 돌연변이(뇌 체성 돌연변이, Brain Somatic Mutation)’인 사실을 세계 최초로 규명해 네이처(Nature)와 네이처 메디슨(Nature Medicine) 등에 2015년, 2018년에 발표한 바 있다. 이후 신약 개발 전문가인 소바젠의 박철원 대표와 함께, 뇌전증의 원인 돌연변이 유전자인 MTOR를 직접 겨냥할 수 있는 RNA 신약(ASO, Antisen
2025-10-10