
< (앞) 남지수 박사과정, (뒷줄 왼쪽부터) 복신 첸 박사과정, 김미소 교수 >
치과 치료부터 복잡한 시제품 제작까지 널리 쓰이는 ‘광경화 3D 프린팅’은 빠르고 정밀하지만 충격에 약해 쉽게 파손되는 한계가 있었다. KAIST 연구진이 이 약점을 극복할 수 있는 신기술을 개발, 의료용 보형물부터 정밀 기계 부품까지 한층 튼튼하면서도 경제적으로 제작할 수 있는 길을 열었다.
우리 대학은 기계공학과 김미소 교수 연구팀이 광경화 3D 프린팅의 내구성 한계를 근본적으로 해결할 수 있는 신기술을 개발했다고 29일 밝혔다.
디지털 광 조형(Digital Light Processing, DLP) 기반 3D 프린팅은 빛으로 액체 레진(고분자 중합체)을 굳혀 정밀한 구조물을 빠르게 제조하는 기술로, 치과·정밀 기계 등 다양한 분야에서 활용되고 있다. 기존 사출 성형은 내구성은 뛰어나지만 금형 제작에 많은 시간과 비용이 드는 반면, 광경화 3D 프린팅은 자유로운 형상 구현이 가능하지만 내구성의 약점이 있었다.
김 교수 연구팀은 ▲충격과 진동을 흡수하면서도 고무에서 플라스틱까지 다양한 물성을 구현할 수 있는 신규 광경화 레진 소재와 ▲구조물의 각 부위에 최적 강도를 자동 배치하는 머신러닝 기반 설계 기술을 결합해 문제를 풀어냈다.

< 그림 1. 광 조절 기반 그래디언트(Gradient) 구조체로 구현하는 광 경화 3DP 고내구성 기술 강성 제어형 점탄성 폴리우레탄 아크릴레이트 (PUA) 소재 개발, 머신러닝 기반 물성 구배 최적화, 그리고 회색조 DLP 3D 프린팅을 통합한 새로운 제조 기술의 개략도. 감쇠 성능을 향상하고, 응력 집중을 완화하여, 고신뢰성·내구성·맞춤형 제조를 위한 통합 솔루션을 제시함. 관절 등 반복적 하중이 가해지는 구조 부품, 자동차 내장재, 정밀 기계 부품 등 다양한 응용 가능성을 보여줌. >
연구팀은 ‘동적 결합을 도입한 폴리우레탄 아크릴레이트(PUA)’ 소재를 개발해 기존 소재 대비 충격·진동 흡수 능력을 크게 높였다. 또한 빛의 세기를 조절해 하나의 레진 조성물에서 서로 다른 강도를 구현할 수 있는 ‘회색조 DLP’ 기술을 적용, 구조물 내 부위별 맞춤 강도를 부여하는 데 성공했다. 이는 인체의 뼈와 연골이 다른 역할을 하며 조화를 이루는 원리에서 착안한 것이다.
머신러닝 알고리즘은 구조와 하중 조건을 분석해 최적의 강도 분포를 자동으로 제안한다. 이를 통해 소재 개발과 구조 설계가 유기적으로 연결되며, 맞춤형 강도 분배가 가능해졌다.
경제성 또한 주목할 부분이다. 기존에는 다양한 물성을 구현하기 위해 고가의 ‘다중 재료 프린팅’ 기술이 필요했지만, 이번 기술은 단일 소재와 단일 공정만으로 동일한 효과를 내 생산 비용을 크게 절감한다. 복잡한 장비나 재료 관리가 불필요해지고, AI 기반 구조 최적화로 연구개발 시간과 제품 설계 비용까지 줄일 수 있다.
김미소 교수는 “이번 기술은 소재 물성과 구조 설계의 자유도를 동시에 확장한 것”이라며, “환자 맞춤형 보형물은 더 내구성 있고 편안해지고, 정밀 기계 부품도 더욱 견고하게 제작할 수 있을 것”이라고 설명했다. 이어 “단일 소재·단일 공정만으로 다양한 강도를 구현해 경제성까지 확보한 점이 큰 의미가 있다”며 “향후 바이오메디컬, 항공·우주, 로봇 등 다양한 산업 분야로의 활용이 기대된다”고 덧붙였다.
이번 연구는 KAIST 기계공학과 김미소 교수 연구팀이 주도했으며, KAIST 박사과정 남지수 학생이 제1저자로 참여했다. 성균관대 복신 첸(Boxin Chen) 학생도 공동연구로 기여했다. 연구 결과는 재료과학 분야 세계적 권위 학술지 어드밴스드 머터리얼즈(Advanced Materials, IF 26.8)에 7월 16일 자 온라인 게재됐다. 또한 연구의 우수성을 인정받아 학술지 권두 도판(Frontispiece)에도 선정됐다.
※ 논문 제목: Machine Learning-Driven Grayscale Digital Light Processing for Mechanically Robust 3D-Printed Gradient Materials
※ DOI: 10.1002/adma.202504075
본 연구의 성과로 김미소 교수는 2025년 7월 국제 학술 출판사 와일리(Wiley)가 주관하는‘와일리 라이징 스타 어워드(Wiley Rising Star Award)’와 ‘와일리 여성 재료과학상(Wiley Women in Materials Science Award)’을 동시에 수상하며 국제적으로도 많은 주목을 받고 있다.
와일리 라이징 스타 어워드는 향후 학문적 리더로서의 잠재력을 지닌 신진 연구자에게 주어지는 상이며, 와일리 여성 재료과학상은 재료과학 분야에서 탁월한 업적을 이룬 여성 과학자를 기리기 위해 제정된 권위 있는 상이다.

< 그림 2. 권두 도판(frontispiece) 이미지. (Issue 42 예정) 광경화 3D 프린터로 구현한 다중 물성 구조. 프로젝터 빛 세기를 위치별로 달리해, 강한 빛은 단단하게·약한 빛은 유연하게 형성되며, AI가 구조 형상에 최적화된 패턴을 설계해 파손을 예방하고 전체를 튼튼하게 만듦 >
한편 이번 연구는 과학기술정보통신부의 지원을 받아 한국연구재단 BRIDGE 융합연구개발사업, 중견연구자지원사업, 차세대 반도체 대응 미세기판 기술개발사업의 일환으로 수행됐다.
목표 과업에 좋은 성능을 보이는 신경망 구조를 찾는 것은 큰 비용이 소요되어, 신경망의 성능을 효율적으로 예측하는 방법론이 활발히 연구되었다. 우리 대학 김재철AI대학원 소속 김선우 박사과정, 황현진 석박통합과정(지도교수 신기정)은 그래프 기반 사전학습을 이용하여, 기존의 효과적인 방법론의 성능을 개선하면서, 약 43배 빠른 예측 속도를 보이는 예측 기법을 개발하였다. 인공지능 모델은 최근 다양한 분야에서 괄목할 성과를 거두었지만, 모델의 신경망 구조가 해당 모델의 성능에 영향을 크게 미치는 특징이 있다. 그러나 목표 과업에 적합한 신경망 구조를 알고자 직접적으로 해당 신경망 구조를 학습 및 평가하는 방식은 큰 비용이 소요된다. 이를 해결하기 위해, 다른 인공지능 모델을 사용하여 특정 신경망 구조의 성능을 예측하는 방식이 사용되었다. 경량화된 예측 모델은 예측 속도는 빠르나 예측 성능이 낮다는 한계가 있었고, 최근 개발된 방법론은 예측 정확도는 높으나 예측 속도가 매우 느린 문
2025-11-11우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07이제는 단순히 대화만 하는 음성비서를 넘어, AI가 직접 화면을 보고 판단해 택시를 호출하고 SRT 티켓을 예매하는 시대가 열렸다. 우리 대학은 전산학부 신인식 교수(㈜플루이즈 대표)가 이끄는 AutoPhone 팀(플루이즈·KAIST·고려대·성균관대)이 과학기술정보통신부가 주최한 ‘2025 인공지능 챔피언(AI Champion) 경진대회’에서 초대 AI 챔피언(1위)에 선정됐다고 6일 밝혔다. 이번 대회는 AI 기술의 혁신성, 사회적 파급력, 사업화 가능성을 종합 평가하는 국내 최대 규모의 AI 기술 경진대회로, 전국 630개 팀이 참가한 가운데 AutoPhone 팀이 최고 영예를 차지하며 연구개발비 30억 원을 지원받는다. AutoPhone 팀이 개발한 ‘FluidGPT’는 사용자의 음성 명령을 이해해 스마트폰이 스스로 앱을 실행하고 클릭·입력·결제까지 완료하는 완전
2025-11-06"KAIST와 같은 우수한 대학, 스타트업, 정부, 연구기관과 긴밀히 협력해 한국의 AI 생태계를 활성화할 것" (젠슨황 대표, 30일 APEC 서밋) 우리 대학은 2025년 10월 31일(금) 이재명 대통령이 젠슨 황 엔비디아(NVIDIA) 대표를 접견해 대한민국 AI 생태계 혁신 방안을 논의한 것과 관련해, 이번 만남이 국내 인공지능(AI) 기술 발전과 글로벌 협력 강화의 중요한 전환점이 될 것이라며 환영의 뜻을 1일 밝혔다. 글로벌 AI 선도 기업인 엔비디아는 대한민국 정부와 함께 ‘AI 3대 강국’과 ‘AI 기본사회’ 실현을 위한 협력 방안을 논의했다. 엔비디아는 최신 GPU 26만 장 이상을 포함해 AI 컴퓨팅 인프라를 대폭 확충하고, 공공 및 민간의 AI 수요에 대응하기 위한 기술 협업을 병행할 계획이다. 이번 접견에서는 ▲AI 인프라 구축 ▲피지컬 AI(Physical AI) 기술 협력 ▲AI 인재양성 및 스타트업 지원
2025-11-03