
< (왼쪽부터) 기계공학과 이송호, 박동근, 문현빈 박사과정, 유승화 교수 (상단) 경희대학교 임재혁 교수, KAIST 와비 데메케 박사 >
신소재 개발의 핵심 단계인 ‘물성 규명’은 그동안 방대한 실험 데이터와 고가 장비에 의존해야 해 연구 효율이 낮다는 한계가 있었다. KAIST 연구진은 재료와 에너지의 변형과 상호작용을 지배하는 ‘물리법칙’을 AI와 결합한 새로운 기법을 통해, 데이터가 부족한 상황에서도 신소재를 신속히 탐색하고 나아가 재료·기계·에너지·전자 등 다양한 공학 분야의 설계와 검증까지 빠르게 수행할 수 있는 기반을 마련했다.
우리 대학 기계공학과 유승화 교수 연구팀이 경희대(총장 김진상) 임재혁 교수 연구팀과 한국전기연구원(원장 김남균, KERI) 류병기 박사와 각각 공동 연구를 통해, 물리 법칙을 인공지능 학습 과정에 직접 반영하는 물리 기반 머신러닝(Physics-Informed Machine Learning, PIML) 기법을 활용해, 적은 양의 데이터만으로도 소재 물성을 정확히 규명할 수 있는 새로운 방법을 제시했다고 2일 밝혔다.

< 소재 물성 파악을 위한 물리기반 머신러닝 방법론 개략도 >
첫 번째 연구에서는 고무와 같은 잘 늘어나는 초탄성(hyperelastic) 소재를 대상으로, 단 한번의 실험에서 얻은 적은 양의 데이터만으로도 재료의 변형 모습과 성질을 동시에 알아낼 수 있는 ‘물리 기반 인공 신경망(Physics-Informed Neural Network, PINN)’ 기법을 제시했다.
기존에는 많은 양의 복잡한 데이터를 모아야만 가능했지만, 이번 연구는 데이터가 부족하거나 제한적이거나 잡음이 포함된 상황에서도 안정적으로 소재 특성을 재현할 수 있음을 입증했다.
두 번째 연구에서는 열을 전기로, 전기를 열로 바꾸는 신소재인 ‘열전 소재’를 대상으로, 단 몇 개의 측정값만으로도 열을 얼마나 잘 전달하는지(열전도도)와 전기를 얼마나 잘 만들어내는지(제벡 계수) 같은 핵심 지표를 추정할 수 있는 PINN 기반 역추정 기법을 제안했다.
나아가 연구팀은 자연의 물리 법칙까지 이해하는 인공지능인 ‘물리 기반 신경 연산자(Physics-Informed Neural Operator, PINO)’를 도입해 학습되지 않은 신소재에도 재학습 과정 없이 일반화가 가능함을 보여주었다.

< (좌측) 물리정보 신경망으로 초탄성 물성 규명 (우측) 물리정보 신경망 및 물리정보 신경 연산자로 열전 물성 추정·일반화 연구 >
실제로 20개 소재로 학습한 뒤, 60개의 새로운 소재를 대상으로 테스트했는데, 모두 높은 정확도로 성질을 맞혀냈다. 이로써 앞으로 수많은 신소재 후보를 빠르게 골라내는 고속·대량 소재 탐색이 가능해질 전망이다.
이번 성과는 단순히 ‘실험을 줄였다’는 수준을 넘어선다. 물리 법칙과 인공지능을 정교하게 결합해, 실험 효율은 높이고 신뢰성은 지킨 첫 사례이기 때문이다.
두 연구 모두 총괄하여 진행한 유승화 교수는 “이번 성과는 물리 법칙을 이해하는 인공지능을 실제 소재 연구에 적용한 첫 사례”라며, “데이터 확보가 제한적인 상황에서도 물성을 신뢰성 있게 규명할 수 있어 다양한 공학 분야로 확산될 것”이라고 말했다.
첫 번째 논문은 KAIST 기계공학과 문현빈·박동근 박사과정이 공동 제1 저자로 참여했으며 국제 학술지 ‘컴퓨터 매써드 인 어플라이드 머케닉스 엔 엔지니어링(Computer Methods in Applied Mechanics and Engineering)’에 8월 13일자에 게재되었다.
※논문 제목: Physics-informed neural network-based discovery of hyperelastic constitutive models from extremely scarce data
※DOI: https://doi.org/10.1016/j.cma.2025.118258
두 번째 논문은 KAIST 기계공학과 문현빈·이송호 박사과정, 와비 데메케(Wabi Demeke) 박사가 공동 제1 저자로 참여했으며 ‘엔피제이 컴퓨테이셔널 머티리얼즈(npj Computational Materials)’에 8월 22일자에 연이어 게재됐다.
※논문 제목: Physics-informed neural operators for generalizable and label-free inference of temperature-dependent thermoelectric properties
※DOI: https://doi.org/10.1038/s41524-025-01769-1
한편, 첫번째 연구는 한국연구재단·과학기술정보통신부 이노코어 프로그램 및 식품의약품안전처 연구과제의 지원을, 두번째 연구는 한국연구재단·과학기술정보통신부 이노코어 프로그램의 지원을 받아 수행됐다.
우리 대학이 추진 중인 ‘K-글로벌 딥테크 창업 전략’이 구체적인 성과로 이어지고 있다. 우리 대학은 창업원이 육성한 의료 AI 솔루션 기업 ㈜배럴아이(대표 배현민)가 글로벌 헬스케어 선도기업으로부터 약 140억 원(미화 1,000만 달러) 규모의 전략적 시리즈 A 투자를 유치하며, KAIST 딥테크 창업 생태계의 대표 성공 사례로 자리매김했다고 14일 밝혔다. ■ KAIST, 연구기반 딥테크 창업 전주기 지원체계 강화 KAIST 창업원은 과학기술 기반 창업을 통한 혁신 생태계 조성을 목표로 기술사업화·창업보육·투자연계·글로벌 진출 등 전주기 지원체계를 운영하고 있다. ‘K-글로벌 딥테크 창업 전략’을 중심으로 연구성과의 시장 진입과 글로벌 투자 유치를 촉진하며, 대한민국을 대표하는 딥테크 창업 허브로 성장하고 있다. KAIST는 특히 AI, 바이오헬스, 반도체, 미래모빌리티 등 첨단 산업 분
2025-11-13목표 과업에 좋은 성능을 보이는 신경망 구조를 찾는 것은 큰 비용이 소요되어, 신경망의 성능을 효율적으로 예측하는 방법론이 활발히 연구되었다. 우리 대학 김재철AI대학원 소속 김선우 박사과정, 황현진 석박통합과정(지도교수 신기정)은 그래프 기반 사전학습을 이용하여, 기존의 효과적인 방법론의 성능을 개선하면서, 약 43배 빠른 예측 속도를 보이는 예측 기법을 개발하였다. 인공지능 모델은 최근 다양한 분야에서 괄목할 성과를 거두었지만, 모델의 신경망 구조가 해당 모델의 성능에 영향을 크게 미치는 특징이 있다. 그러나 목표 과업에 적합한 신경망 구조를 알고자 직접적으로 해당 신경망 구조를 학습 및 평가하는 방식은 큰 비용이 소요된다. 이를 해결하기 위해, 다른 인공지능 모델을 사용하여 특정 신경망 구조의 성능을 예측하는 방식이 사용되었다. 경량화된 예측 모델은 예측 속도는 빠르나 예측 성능이 낮다는 한계가 있었고, 최근 개발된 방법론은 예측 정확도는 높으나 예측 속도가 매우 느린 문
2025-11-11우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07이제는 단순히 대화만 하는 음성비서를 넘어, AI가 직접 화면을 보고 판단해 택시를 호출하고 SRT 티켓을 예매하는 시대가 열렸다. 우리 대학은 전산학부 신인식 교수(㈜플루이즈 대표)가 이끄는 AutoPhone 팀(플루이즈·KAIST·고려대·성균관대)이 과학기술정보통신부가 주최한 ‘2025 인공지능 챔피언(AI Champion) 경진대회’에서 초대 AI 챔피언(1위)에 선정됐다고 6일 밝혔다. 이번 대회는 AI 기술의 혁신성, 사회적 파급력, 사업화 가능성을 종합 평가하는 국내 최대 규모의 AI 기술 경진대회로, 전국 630개 팀이 참가한 가운데 AutoPhone 팀이 최고 영예를 차지하며 연구개발비 30억 원을 지원받는다. AutoPhone 팀이 개발한 ‘FluidGPT’는 사용자의 음성 명령을 이해해 스마트폰이 스스로 앱을 실행하고 클릭·입력·결제까지 완료하는 완전
2025-11-06