-
광자 시간결정에서의 자발 방출·여기 현상 첫 규명
빛과 원자의 상호작용에서 핵심적인 ‘자발 방출(spontaneous emission)’ 현상이 광자 시간결정(Photonic Time Crystal, PTC) 안에서 새로운 양상으로 나타난다는 사실이 규명됐다. KAIST 연구진이 주도한 이번 연구는 기존 이론을 뒤집고, 더 나아가 새로운 ‘자발 방출 여기(spontaneous emission excitation)’ 현상을 예측하였다.
우리 대학은 물리학과 민범기 교수 연구팀은 신소재공학과 신종화 교수, 기계공학과 전원주 교수, 물리학과 조길영 교수 및 IBS 연구단, UC버클리, 홍콩과기대 등과 협력하여, 광자 시간결정에서 자발 방출 붕괴율이 2022년 Science에 실린 논문에서 제기된 ‘소멸’이 아니라, 반대로 향상된 값을 갖는다는 점을 입증했다고 밝혔다. 또한, 원자가 바닥 상태에서 들뜬 상태로 전이하며 동시에 광자를 방출하는 새로운 과정인 ‘자발 방출 여기’ 현상도 예측하였다.
자발 방출은 원자가 스스로 광자를 방출하는 과정으로, 양자광학과 광소자 연구의 기초가 된다. 지금까지는 공진기나 광자결정 같은 공간 구조를 설계해 자발 방출을 제어해왔으나, 매질의 굴절률을 시간적으로 주기적으로 변조하는 광자 시간결정이 등장하면서, 시간축에서의 제어 가능성이 주목받고 있다.
기존 이론은 광자 시간결정에서 자발 방출 붕괴율이 특정 주파수에서 완전히 사라진다고 예측했지만, 이번 연구는 반대로 붕괴율이 현저히 향상됨을 처음으로 증명했다. 이는 비직교 모드 효과에 기인하는 것으로, 비보존 광학 연구의 중요성을 부각시켰다.
연구팀은 또한, 원자가 바닥 상태에서 에너지를 얻어 들뜬 상태로 올라가면서 동시에 광자를 방출하는 ‘자발 방출 여기’라는 새로운 과정을 예측하여 보고했다. 이는 시간결정 매질이 외부에서 에너지를 공급함으로써 가능해진 비평형 과정으로, 기존 평형 광학에서는 설명할 수 없는 새로운 빛-물질 상호작용 현상이다.
이번 연구 결과는 자발 방출 연구의 패러다임을 근본적으로 전환시키며, 향후 양자 광원 설계, 비평형 양자광학 등 폭넓은 분야로 응용될 수 있다.
민범기 교수는 “이번 성과는 시간적으로 빠르게 변화하는 환경 하에서 자발 방출을 설명하는 근본 이론을 재정립한 것으로, 자발 방출 붕괴의 향상과 ‘자발 방출 여기’ 현상은 빛-물질 상호작용 연구의 패러다임을 바꿀 수 있다”고 밝혔다.
이번 연구는 이경민 박사과정생이 제1저자로 참여했으며, 그 결과는 2025년 9월 23일자 국제 학술지 Physical Review Letters 온라인판에 게재되었고, 동시에 Physics.org에서 하이라이트되었으며, 편집자 추천(Editors' Suggestion) 논문으로 선정되었다. 이 연구는 한국연구재단과 삼성미래기술육성재단의 지원을 받아 수행되었다.
※ 논문명 : *Spontaneous emission decay and excitation in photonic time crystals*
2025.10.01
조회수 771
-
빛으로 단백질 · mRNA를 원할 때 꺼내 쓴다
기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다.
이번 연구는 세포 내 다양한 생체 분자가 막이 없는 응축체(Biomolecular Condensate)에 저장돼 기능을 조절한다는 최신 세포기능 조절 원리를 빛으로 구현한 기술이다.
연구팀은 특정 분자와 선택적으로 결합하는 표적 부위가 부착된 광유전학 단백질 복합체를 증폭해, 빛 반응 분자 저장·방출 시스템인 릴리저 기술을 설계했다. 이를 통해 세포 및 생체 내에서 특정 단백질 혹은 mRNA를 릴리저에 안정적으로 저장해 빛을 비추면 원하는 시점에 방출할 수 있음을 증명했다.
연구팀은 다양한 세포주와 신경세포, 그리고 생쥐 간 조직 등에서 해당 시스템의 효과를 입증했다.
연구팀은 단백질을 저장⸱방출하는 단백질 방출시스템인 ‘단백질 릴리저 (Protein-RELISR)’를 통해 세포 모양 변화, 신경세포 내 국소 단백질 활성 등 미세 환경에서의 생화학 반응을 실시간으로 제어하는 데 성공했다.
아울러, mRNA를 표적으로 하는 mRNA 방출시스템인‘mRNA 릴리저 (mRNA-RELISR)’를 활용해, mRNA가 세포질 내에서 번역될 시점을 빛으로 조절하는 데 성공했으며, 실제 생쥐 모델에서도 mRNA 번역 조절이 가능함을 확인했다.
빛으로 표적 분자를 순간적으로 ‘가두는’ 기존 연구 LARIAT(단백질 올가미, 2014), mRNA-LARIAT(mRNA 올가미, 2019)에서 나아가, 이번 연구에서는 동일한 광자극으로 세포 내 무막 응축체에 저장된 단백질과 mRNA를 즉시 ‘방출해’단백질의 기능을 복원하고 mRNA 번역을 활성화할 수 있는 새로운 플랫폼을 제시했다.
연구를 주도한 허원도 석좌교수는 “릴리저(RELISR) 플랫폼은 광유전학 원리를 기반으로 단백질과 mRNA를 원하는 시간, 장소에서 저장하고 방출할 수 있는 범용 도구로, 뇌 신경세포 연구나 세포치료제, 차세대 신약 개발 등에 폭넓게 응용될 수 있다”며 “향후 유전자 가위(CRISPR-Cas) 시스템 등과의 결합이나, 조직 특이적 전달 기술(AAV 등)과 접목할 경우, 더욱 정밀한 치료 도구로 확장될 수 있을 것”이라고 설명했다.
이번 연구는 생명과학과 허원도 석좌교수(교신저자)의 지도로, 이채연 박사(연구 당시 학생, 제1 저자)가 중심이 되어 연구를 수행했다. 공동 교신저자인 물리학과 유다슬이 박사와 박용근 석좌교수도 연구에 참여했으며, 특히 박용근 교수 연구팀은 이미징 기반 분석을 통해 세포 내에서 ‘릴리저(RELISR)’ 시스템이 유도하는 생물리학적 변화를 정량적으로 평가하고, 실험 결과의 신뢰성과 객관성을 높이는 데 중요한 역할을 담당했다.
생명과학연구소 이채연 박사가 제1 저자로 주도한 이 연구는 국제 학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 2025년 7월 7일자로 게재됐다.
논문명: Optogenetic storage and release of protein and mRNA in live cells and animals
DOI: 10.1038/s41467-025-61322-y
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 유전자편집·제어·복원기반기술개발사업의 지원을 받아 수행됐다.
2025.07.23
조회수 3386
-
빛 공해 제로·열 차감 ‘스마트 윈도우’ 개발..건물·차량 적용 가능
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다.
우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다.
최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다.
연구팀이 개발한 차세대 스마트 윈도우 기술인 RECM (Reversible Electrodeposition and Electrochromic Mirror)은 단일 구조의 *전기변색 소자를 기반으로, 가시광선(빛)과 근적외선(열)의 투과율을 능동적으로 조절할 수 있는 스마트 윈도우 시스템이다.
*전기변색 소자: 전기 신호에 따라 광학적 특성이 변하는 특성을 가진 장치
특히, 기존 금속 *증착 방식의 스마트 윈도우에서 문제로 지적돼 온 외부 반사광에 의한 눈부심 현상을 변색 소재를 함께 적용해 효과적으로 억제함으로써, 건물 외벽에 활용 가능한 ‘보행자 친화형 스마트 윈도우’를 구현했다.
*증착: 전기화학 반응을 이용해 Ag+와 같은 금속 이온을 전극 표면에 고체 형태로 입히는 과정
이번 연구에서 개발된 RECM 시스템은 전압 조절에 따라 세 가지 모드로 작동된다.
모드 I(투명 모드)는 일반 유리처럼 빛과 열을 모두 통과시켜 겨울철 햇빛을 실내로 유입시키는 데 유리하다.
모드 II(변색 모드)에서는 레독스 반응(산화-환원 반응)을 통해 *프러시안 블루(PB)와 **DHV+⦁ 화학종이 형성되며 창이 짙은 파란 색으로 변한다. 이 상태에서는 빛은 흡수되고 열은 일부만 투과돼, 프라이버시 확보와 동시에 적절한 실내 온도 조절이 가능하다.
*프러시안 블루: 전기 자극에 따라 무색과 파란색으로 전환되는 전기변색 물질
**DHV+⦁: 전기 자극 시 생성되는 라디칼 상태의 변색 분자
모드 III(변색 및 증착 모드)는 은(Ag+)이온이 환원 반응을 통해 전극 표면에 증착돼 빛과 열을 반사하는 동시에, 변색 물질이 반사광을 흡수함으로써 외부 보행자의 눈부심까지 효과적으로 차단할 수 있다.
연구팀은 미니어처 모델 하우스를 활용한 실험을 통해 RECM 기술의 실질적인 실내 온도 저감 효과를 검증했다. 일반 유리창을 적용한 경우, 실내 온도는 45분 만에 58.7℃까지 상승했다. 반면, RECM을 모드 III로 작동시킨 결과 31.5℃에 도달해 약 27.2℃의 온도 저감 효과를 나타냈다.
또한, 전기 신호만으로 각 상태 전환이 가능해 계절, 시간, 사용 목적에 따라 즉각적으로 대응할 수 있는 능동형 스마트 기술로 평가받고 있다.
이번 연구의 교신저자인 우리 대학 문홍철 교수는 “이번 연구는 가시광 조절에 국한된 기존 스마트 윈도우 기술에서 더 나아가 능동적 실내 열 제어는 물론 보행자의 시야 안전까지 종합적으로 고려한 진정한 스마트 윈도우 플랫폼을 제시한 것”이라며, “도심 건물부터 차량, 기차 등 다양한 응용 가능성이 기대된다”고 밝혔다.
이번 연구 결과는 에너지 분야 국제 저명 학술지인 ‘에이시에스 에너지 레터스(ACS Energy Letters)’ 10권 6호 지에 2025년 6월 13일 자로 게재됐다.
※ 논문명: Glare-Free, Energy-Efficient Smart Windows: A Pedestrian-Friendly System with Dynamically Tunable Light and Heat Regulation
※ DOI: 10.1021/acsenergylett.5c00637
한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 한국기계연구원 기본사업의 지원을 받아 수행됐다.
2025.06.17
조회수 4345
-
운동 중 고혈압 감지, KAIST 웨어러블 광혈압계 개발
기존 커프 방식으로 혈압을 측정할 때 팔을 압박하는 불편함이 있으며, 측정 전 최소 10분의 안정이 필요했다. 최근 스마트워치에 적용된 혈압 측정 기술 역시 고혈압이나 운동 중 정확도가 떨어지고, 연속 측정이 어렵다는 단점이 있다. KAIST 연구진이 단순 휴식 상태 뿐만 아니라 계단 오르기 등 운동 중 고혈압 감지까지도 정확하게 연속 측정이 가능한 혈압 모니터링 기술을 개발했다.
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 수십 개의 세분화된 파장의 빛을 사용해 혈관 내 혈류 변화를 광학적으로 측정하는 혁신 방법인 초분광 PPG(광용적맥파, Photoplethysmography) 기술을 활용해 운동 상태에서의 연속 혈압 모니터링에 활용될 수 있는 웨어러블 혈압 센서를 개발하는 데 성공했다.
최근 스마트워치에서 세 가지 파장을 갖는 PPG 센서를 이용해 혈압 측정 기술을 탑재했지만, 고혈압 상태 및 운동 상태에서의 낮은 정확도와 연속적인 측정이 불가하다는 문제가 있다.
연구팀은 빛의 파장을 분석해 주는 고해상도의 초박형 마이크로분광기를 포함한 초분광 PPG 모듈을 통해 다양한 파장의 PPG 신호를 동시에 측정하고, 연속적이고 정밀한 시간차를 계산해 안정적으로 혈압을 추정할 수 있는 방식을 고안했다.
연구팀이 개발한 웨어러블 초분광 PPG 센서는 연속적으로 혈압을 모니터링할 수 있을 뿐만 아니라 심박수, 호흡률과 같은 다른 생리적 매개변수도 동시에 측정해 운동 전후의 혈압 변화를 세밀하게 분석할 수 있다.
이번 연구 결과는 운동 중 혈압 변화를 연속적으로 추적해 운동으로 유발되는 고혈압을 감지할 수 있다. 연구팀은 운동 중 회복기의 혈압 추정 정확도가 0.75 정도였던 다른 감지 방식보다 높은 0.95의 연관성 지표(최소 –1, 최대 1, 수치가 1에 가까울수록 예측이 실제값과 거의 일치)를 나타내는 등 높은 신뢰성을 증명했다.
KAIST 정기훈 교수는 "이번 연구는 운동 중 측정된 고혈압 실험을 통해 얻은 새로운 데이터를 기반으로, 웨어러블 초분광 PPG 센서가 운동 중의 혈압 측정과 회복기 혈압 추적에서 중요한 역할을 할 수 있음을 증명한 사례에 해당하며, 초분광 PPG 기술은 향후 개인 맞춤형 디지털 헬스케어 분야에 크게 기여할 것”이라고 연구의 의미를 설명했다.
KAIST 바이오및뇌공학과 박정우 박사 후 연구원이 주도한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스 (Advanced Science)’에 4월 25일에 게재됐다.
※ 논문명: 웨어러블 초분광 광 혈류 측정 센서를 활용한 운동 유발 고혈압 진단, Wearable Hyperspectral Photoplethysmography allows Continuous Monitoring of Exercise-induced Hypertension, https://doi.org/10.1002/advs.202417625
이 연구는 한국보건산업진흥원 한국형 ARPA-H 사업, 한국연구재단 글로벌 중견연구사업등의 지원을 받아 수행했다.
2025.05.08
조회수 3845
-
세계 최초 플라빈 빛 파장 설계 성공, 의료·환경 혁신
플라빈은 우리 몸 등 생명체 내의 에너지 생산과 생화학 반응에 관여하는 중요한 조효소이자 특정 색의 빛을 방출하는 형광 분자다. 하지만 자연계의 플라빈은 대부분 파란색에서 초록색 영역까지 짧은 파장의 빛을 낼 수 있어, 그보다 긴 파장인 적외선 영역까지는 확장되기 어렵다. KAIST 연구진이 기존 한계를 극복하고 플라빈이 내뿜는 형광 파장을 근적외선까지 확장하여 의료·환경·에너지 분야의 새로운 가능성을 제시했다.
우리 대학 화학과 백윤정 교수 연구팀은 근적외선 파장에서 발광이 가능한 5개의 고리 구조를 가진 새로운 오환형 플라빈 분자를 세계 최초로 개발하는 데 성공했다.
백윤정 교수 연구팀은 전통적으로 세 개의 고리를 갖는 플라빈 구조에서 플라빈의 핵심 구조를 5개의 고리로 확장하고, 여기에 산소 및 황 등 이종 원자를 정교하게 도입함으로써 분자의 전자 구조를 정밀하게 조절하는 새로운 합성 전략을 제시했다.
특히 이번에 개발된 분자는 적외선에 가까운 짙은 붉은색 및 근적외선 영역의 빛을 낼 수 있어, 기존 플라빈 색소가 낼 수 있었던 색의 범위를 획기적으로 확장했다는 평가를 받고 있다.
그 결과, 황이 포함된 구조체는 772 nm에 달하는 근적외선 영역에서 발광하며, 이는 지금까지 보고된 플라빈 유도체 중 가장 긴 파장이다. 또한 이 분자는 기존의 플라빈에서 드물게 관찰되던 준가역적인 산화 특성을 나타내어 전기화학적 기능성까지 동시에 갖춘 다기능성 분자 플랫폼으로 주목받고 있다.
연구팀은 분자의 구조를 미세하게 조절함으로써, 빛을 어떻게 흡수하고 방출할지를 원하는 대로 설계할 수 있게 되었고, 전기 신호를 전달하거나 변환하는 능력 또한 함께 제어할 수 있음을 입증했다.
이번 연구는 기존 플라빈의 한계를 뛰어넘어 빛의 파장을 바꿈으로서 활용 기술과 응용 범위를 넓힐 수 있다는 것을 보여줬다. 예를 들어, 근적외선(NIR) 같은 긴 파장의 빛을 통해 몸 속 더 깊이 정확하게 진단·치료하게 하며, 오염이나 독성물질이 특정 빛에 반응하도록 설계도 가능하며, 긴 파장의 빛을 흡수해서 친환경 에너지로 만들게 하는 등 발광 파장과 전자 특성을 정밀하게 제어하는 새로운 플랫폼을 제시하였다.
백윤정 교수는 “플라빈의 빛 파장을 바꿀 수 있다는 것은 우리가 원하는 상황에 맞게 빛을 자유롭게 설계하고 활용할 수 있다는 뜻으로, 앞으로 우리 손으로 원하는 색과 성질을 가진 분자를 정밀하게 디자인하고 만들수 있다는 가능성을 보여준 것”이라며, “이는 의료, 환경, 에너지 등 빛 기반 기술이 적용되는 수많은 분야에서 게임 체인저가 될 수 있는 기반 기술이 될 것”이라고 말했다.
해당 성과는 세계적인 국제 학술지 Nature사가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 4월 15일자로 게재되었다.
※ 논문명 : Expanding the Chemical Space of Flavins with Pentacyclic architecture
※ 저자 정보 : 서다영 (KAIST, 제1 저자), 권성연 (기초과학연구원, 공동 제2 저자), 윤가혜 (KAIST, 공동 제2 저자), 손태일 (KAIST, 공동 제2 저자), 원창현 (KAIST, 제3 저자), Neetu Singh (KAIST, 제4 저자), 김동욱 (기초과학연구원, 제5 저자) 및 백윤정 (KAIST, 교신저자) 포함 총 8 명 DOI: 10.1038/s41467-025-58957-2
한편, 이번 연구는 과기정통부가 지원하는 개인기초연구사업의‘우수신진연구’와 산업통상자원부가 지원하는‘소재부품개발사업’과제의 지원을 받아 수행됐다.
2025.04.23
조회수 4617
-
전기및전자공학부 명현 교수, 2024 한빛대상 수상
우리 대학 명현 전기및전자공학부 교수가 ‘2024 한빛대상’을 수상했다. 올해로 20주년을 맞은 ‘2024 한빛대상’은 한화그룹과 대전MBC가 공동으로 주관하는 시상식으로, 매년 충청 지역 각 분야의 발전에 공헌한 인물을 발굴해 포상하고 있다.
한빛대상은 크게 5개 분야 (과학기술, 교육/체육진흥, 문화예술, 사회봉사, 지역경제 발전 분야)의 수상자 1명씩을 선정하고 각 상금 1천만원과 상패를 수여한다. 올해는 특별히 특별상(파리올림픽 펜싱 2관왕 대전시청 오상욱 선수) 항목을 추가했다.
과학기술부문 수상자인 우리 대학 명현 전기및전자공학부 교수는 16년간 자율 주행, 자율 보행 등의 분야를 연구하여 해당 분야 발전에 기여했으며, 블라인드 보행 로봇 신기술인 '드림워크' 제어기를 개발하여 국제 사족로봇 자율보행 경진대회 우승을 이끈 공로를 인정받았다.
각 부문의 수상은 ▲명현 KAIST 교수(과학기술 부문) ▲배상목 청운대학교 교수(교육체육진흥 부문) ▲이환수 한국국악협회 대전광역시지회장(문화예술 부문) ▲여광조 밀알선교단 대표(사회봉사 부문) ▲길배수 주식회사 트라이포드 대표이사(지역경제발전 부문)가 차지했다.
‘2024 한빛대상’ 시상식은 10월 24일(목) 대전 MBC 공개홀에서 개최됐으며, 10월 29일(화) 금일 대전 MBC TV로 녹화 방영됐다.
2024.10.29
조회수 5277
-
세계 최초 원자 편집으로 신약 발굴 패러다임 바꿔
선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다.
우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다.
해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion)
많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과를 극대화 하는데 중추적인 역할을 한다.
이처럼 약물 분자 골격에 특정 원자를 도입했을 때 나타나는 효능을 ‘단일 원자 효과(Single Atom Effect)'라 한다. 선도적 신약 개발에서는 수많은 원자 종류 중 약효를 극대화하는 원자를 발굴하는 것이 핵심으로 여겨진다.
하지만, 단일 원자 효과를 평가하기 위해서는 다단계·고비용의 합성 과정이 필연적으로 요구되어 왔다. 산소 혹은 질소 등을 포함한 고리 골격은 고유의 안정성(방향족성)으로 인해 단일 원자만 선택적으로 편집하기 어렵기 때문이다.
박 교수 연구팀은 빛에너지를 활용하는 광촉매를 도입하여 해당 기술을 구현했다. 분자 가위 역할을 하는 광촉매 개발을 통해 오각 고리를 자유자재로 자르고 붙임으로써 상온·상압 조건에서 동작하는 단일 원자 교정 반응을 세계 최초로 성공시켰다.
들뜬 상태의 분자 가위가 단전자 산화 반응을 통해 퓨란의 산소를 제거하고, 질소 원자를 연이어 추가하는 새로운 반응 메커니즘을 발견했다고 연구팀 관계자는 전했다.
이번 연구의 제1 저자인 KAIST 화학과 김동현, 유재현 석박사통합과정 학생은 “빛에너지를 활용해 가혹한 조건을 대체하여 해당 기술이 높은 활용성을 가질 수 있었다”며, “복잡한 구조로 이루어진 천연물이나 의약품들을 기질로 활용해도 선택적으로 목표 편집이 수행된다”고 이번 연구의 범용성을 설명했다.
이번 연구를 이끈 박윤수 교수는 “오각 고리형 유기 물질의 골격을 선택적으로 편집할 수 있게 됨에 따라, 제약 분야의 중요한 숙제였던 의약품 후보 물질의 라이브러리 구축에 새로운 장을 열 것”이라 언급하며, “해당 기반 기술이 신약 개발 과정을 혁신하는데 쓰이기를 바란다”고 덧붙였다.
해당 내용은 ‘사이언스(Science)’誌 내의 퍼스텍티브(Perspective) 섹션에 추가로 선정되어 연구의 의의가 소개되기도 하였다. 이는 해당 연구에 참여하지 않은 저명한 과학자가 파급력 있는 연구를 선별하여 해설을 제공하는 코너다.
한편 이번 연구는 한국연구재단의 우수신진연구, KAIST 교내연구사업 도약연구 및 초세대협업연구실, 포스코청암재단의 포스코 사이언스펠로십의 재원을 바탕으로 수행됐다.
2024.10.10
조회수 9873
-
빛의 화가 김인중 신부 ‘빛의 소명’ 특별 전시 개최
우리 대학이 세계적인 스테인드글라스 거장인 김인중 신부(베드로·도미니코 수도회)의 특별전시 '빛의 소명(召命) La Vocation de Lumière' 展을 18일부터 개최한다.
대전 본원 학술문화관 4층 김인중홀에서 열리는 이번 전시에서는 산업디자인학과 초빙석학교수로 임용된 김인중 신부가 제작한 가로 10.12m, 세로 7.33m 크기의 천장 스테인드글라스 작품이 공개된다. 우리 대학의 지원을 받아 제작된 이 작품은 김인중 신부가 채색한 도안을 유리판에 세라믹 컬러 페인트로 정교하게 옮긴 후 630℃에 구워 완성됐다. 전체 면적 68.06㎡로 총 53점의 유리판으로 구성됐다. 일반 벽면이 아닌 20m 높이의 천창에 설치된 작품은 투과되는 빛에 따라 다양한 입체감으로 색을 드리운다. 김인중 신부 고유의 붓 터치와 색감에 시간과 계절이라는 자연의 변화가 더해져 매일 다른 빛의 형상을 감상할 수 있는 것이 특징이다. 김 신부는 지난해 4월부터 제작회의, 세미나, 인터뷰 등을 통해 여러 차례 KAIST 구성원들과 교류하며 설치 공간을 선정하고 이에 맞는 작품을 설계했다. 스테인드글라스의 스케치 격인 원화를 그리는 창작 과정도 구성원들에게 공개됐다. 작품이 설치된 학술문화관 4층은 학생들의 창작·협업·휴식·행사 개최 등 다양한 목적으로 사용되는 공간이다. 캠퍼스를 전시 공간으로 활용하는 ‘캠퍼스 갤러리’ 추진 계획에 맞춰 이번 전시를 계기로 김인중홀로 명명돼 스테인드글라스와 함께 원화 회화 9점이 함께 전시된다.
김인중 신부는 "사람들을 결합시키고 사상을 전달하는 수단이 된다는 점에서 예술과 과학의 구실은 같지만, 과학은 개념으로 설명하고 예술은 미적 형상(美的形象)으로 말한다"라고 전했다. 이어, 김 신부는 "교내 구성원들이 예술 작품에 영감을 받아 창의적인 인재로 성장할 수 있길 바란다"라고 덧붙였다. 전시를 총괄한 석현정 KAIST 미술관장은"스테인드글라스로 빛의 존재를 다시금 상기시켜 주는 '빛의 소명(召命)' 전시는 캠퍼스의 일상 공간을 영감의 원천을 제공하는 특별한 공간으로 바꾸어 놓았다"라고 설명했다. 석 관장은 "물감보다 더 정교하고 미묘한 수천 가지 색을 머금은 색유리의 아름다움을 탐미하며 구성원들이 생활 속에서 문화예술을 향유하길 바란다"고 말했다.
김인중 특별전시 '빛의 소명(召命) La Vocation de Lumière'은 올해 12월 29일까지 KAIST 구성원은 물론 대중에게 무료로 공개된다. 법정 공휴일을 제외한 매일 정오에 사전 예약자에 한해 도슨트가 함께하는 '홀리눈(Holy Noon)' 투어를 진행한다. 도슨트 투어 신청에 관한 내용은 KAIST 미술관 홈페이지(https://art.kaist.ac.kr/)에서 확인할 수 있다. 김인중 작가는 서울대 미술대학 회화과와 동대학원을 졸업한 뒤 1969년 스위스 프리부르(Fribourg)대학으로 떠나 도미니코 수도회에 입회해 사제가 되었다. 1973년 파리 쟈크 마쏠 화랑에서 첫 개인전을 연 이후 프랑스를 중심으로 활동했다. 스위스 일간지 '르 마땡(Le Matin)'에서 세계 10대 스테인드글라스 작가로 선정되며 유럽 화단에서 '빛의 화가'라는 칭호를 얻었다. 프랑스 정부로부터 문화예술 공훈 훈장인 '오피시에'(2010)를 받아 한국인으로는 처음 '아카데미 프랑스 가톨릭' 회원(2016)에 추대됐다. 프랑스 중부의 소도시인 앙베르(Ambert)의 옛 재판소 자리의 '김인중 미술관'(2019), 아일랜드 더블린 현대미술관(Museum of Modern Art), 국립현대미술관, 대전시립미술관, 용인 신봉동성당 등이 작품을 소장하고 있다.
▶ ART TALK :: 김인중의 스테인드글라스 Kim Enjoong's Stained Glass(https://youtu.be/jBoAdOQayy0)
2023.09.18
조회수 9294
-
세계 최초로 체내 OLED 빛치료 구현
빛 치료는 외과적 혹은 약물적 개입 없이도 다양한 긍정적 효과를 불러일으킬 수 있어 최근 꾸준히 주목받고 있다. 하지만 피부 내에서 빛의 흡수 및 산란 등의 한계로 인해 보통 피부 표면 등 체외 활용에 국한되며 내과적 중요성이 있는 체내 장기에는 적용하기 어려운 문제가 있었다.
우리 대학 전기및전자공학부 유승협 교수, 서울아산병원 소화기내과 박도현 교수, 그리고 한국전자통신연구원 실감소자연구본부로 이루어진 공동연구팀이 유기발광다이오드(organic light-emitting diode, OLED) 기반 *카테터를 세계 최초로 구현해, 빛 치료를 체내 장기에도 적용할 수 있는 길을 열었다고 13일 밝혔다.
☞ 카테터(catheter): 주로 환자의 소화관이나 기관지, 혈관의 내용물을 떼어 내거나 약제나 세정제 등을 신체 내부로 주입하는 등에 쓰이는 고무 또는 금속 재질의 가는 관.
공동연구팀은 카테터 형태의 OLED 플랫폼을 개발해 십이지장과 같은 튜브 형태의 장기에 직접 삽입할 수 있는 OLED 빛 치료기기를 개발, 이를 현대의 주요 성인병 중 하나인 제2형 당뇨병 개선 가능성을 확인하고자 했다.
공동연구팀은 기계적으로 안정적이면서도 수분 환경에서도 잘 동작할 수 있는 초박막 유연 OLED를 개발했고, 이를 원통형 구조 위를 감싸는 형태로 전 방향으로 균일한 빛을 방출하는 OLED 카테터를 구현했다. 그뿐만 아니라, 면 광원으로서 OLED가 갖는 특유의 저 발열 특성으로 체내 삽입 시 열에 의한 조직 손상을 방지했으며, 생체적합성 재료 활용을 통해 생체에 미치는 부작용을 최소화했다.
공동연구팀은 OLED 카테터 플랫폼을 통해 제2형 당뇨병 쥐 모델 (Goto-Kakizaki rat, GK rat)을 대상으로 동물실험을 진행했다. 십이지장에 총 798 밀리주울 (mJ)의 빛 에너지가 전달된 실험군의 경우 대조군에 비해 혈당 감소와 인슐린 저항성이 줄어드는 추세를 확인했다. 또한 간 섬유화의 저감 등 기타 의학적 개선 효과도 확인할 수 있었다. 이는 체내에 OLED 소자를 삽입하여 빛 치료를 진행한 세계 최초의 결과다.
☞ 밀리주울 (mJ): 천분의 일 주울 (Joule)로, 에너지의 단위이다. 광원에서 나오는 빛의 양은 단위 시간당 에너지의 단위인 밀리와트 (mW)로 통상 나타내는데, 밀리주울은 밀리와트에 시간 (초)을 곱하여 계산된다. 본 연구에서는 OLED 카테터로부터 1.33 밀리와트의 붉은색 빛을 10분간 (600초) 쪼여 총 798 mJ의 빛 에너지를 전달하였다.
우리 대학 유승협 교수 연구실의 심지훈 박사와 채현욱 박사과정, 울산대학교 의과대학 서울아산병원 박도현 교수 연구실의 권진희 박사과정이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 2023년 9월 1일 자 온라인판에 게재됐다. (논문명: OLED catheters for inner-body phototherapy: A case of type 2 diabetes mellitus improved via duodenal photobiomodulation)
유승협 교수는 “생체 의료 응용으로의 OLED 기술 확보는, 주로 디스플레이 분야 또는 조명 분야에 국한된 OLED 산업의 새로운 지평을 여는데 중요한 과제 중 하나로서, 이번 연구는 새로운 응용분야를 발굴하고 원천기술 확보함에 있어 소자-의학 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다.
또한 서울아산병원 박도현 교수는 “십이지장 내 OLED 광조사가 장내 마이크로바이옴에 영향을 주어 장내 유익균의 증가 및 유해균의 감소를 통한 제2형 당뇨병의 혈당 개선, 인슐린 저항성 감소 및 간 섬유화 억제를 일으키는 것으로 보인다. OLED의 이상적 광 특성을 활용해 인체 내에서 빛 치료 가능성을 본 연구로서 향후 다양한 응용 가능성이 기대된다. 다만, 본 결과는 소형 동물에서 얻어진 것으로, 소동물-대동물-사람 등의 순차적인 검증 단계가 필요하며, 그 원리에 관한 연구가 함께 수반되어야 한다”라고 말하며, 이번 연구의 중요성을 강조했다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업 (ICT 소재⦁부품⦁장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2023.09.13
조회수 9808
-
김인중 초빙석학교수 초대전시 빛의 전언(傳言) 개최
우리 대학이 스테인드글라스의 세계적 거장이자 산업디자인학과 초빙석학교수로 재직 중인 김인중(金寅中, 1940~) 신부(베드로·도미니코 수도회)의 초대 전시 '빛의 전언(傳言)을 서울 경영대서 개최 중이다. 지난 16일(목) 시작된 이번 전시는 다양한 사회구성원이 유기적으로 연계되어있는 캠퍼스를 전시 공간으로 활용하는 ‘캠퍼스 갤러리’ 추진 계획의 일환으로 기획되었다. KAIST 경영대학과 미술관이 공동 주최하는 이번 전시는 김인중 교수가 신부이자 예술가로 활동해온 60여 년의 작품세계를 선보인다. 우리 대학 초빙석학교수로 재직하며 제작한 작품을 포함해 회화, LED 조명작업, 도자기 등 60여 점의 작품을 전시하고 형상을 떠난 자유로움과 원초적인 아름다움에 대한 깊이를 관람객들에게 전달한다. 김인중 교수는 서울대 미술대학 회화과와 동대학원을 졸업한 뒤 1969년 스위스 프리부르(Fribourg)대학으로 떠나 도미니코 수도회에 입회해 사제가 되었다. 1973년 파리 쟈크 마쏠(Jacques Massol) 화랑에서 첫 개인전을 연 이후 유럽과 미국, 일본 등에서 꾸준히 전시회를 열었고, ‘빛의 화가’라는 칭호를 얻으며 유럽 화단에 큰 반향을 일으켰다. 유럽의 대표적인 스테인드글라스 작가로 꼽히는 김 교수의 작품은 프랑스의 샤르트르 대성당을 비롯해, 독일·이탈리아·스위스·한국 등 세계 38개 나라에 설치되어 있다. 프랑스 정부가 주는 문화예술 훈장인 ‘오피셰’(2010)를 받아, 한국인으로는 처음 '아카데미 프랑스 가톨릭' 회원(2016)에 추대됐으며, 프랑스 중부의 소도시인 앙베르(Ambert)의 옛 재판소 자리에는 '김인중 미술관'(2019)이 들어섰다.
이번 전시를 공동주최한 석현정 KAIST 미술관장은 "KAIST 미술관이 소장하고 있는 세계적 수준의 예술품을 감상하는 기회를 구성원에게 제공하고 캠퍼스라는 일상의 공간을 전시장으로 활용해 관람객들에게 직접 다가가려는 예술·문화적 시도"라고 전했다.
이어, 윤여선 KAIST 경영대학장은 "세계적인 거장으로 인정받는 독창성에도 불구하고 대중들에게 잘 알려지지 않았던 작가의 삶과 예술을 KAIST 경영대학 특별전을 통해 소개하고, 일상의 삶을 통해 빛을 나누고자 하는 작가의 메시지가 우리 시대에 전하는 바를 되새기는 계기가 되기를 기대한다"고 밝혔다.김인중 초대전시 빛의 전언은 서울 동대문구 소재 KAIST 경영대학 미술전시관에서 올해 12월 29일(금)까지 열린다.
2023.03.24
조회수 9468
-
빛을 완전히 조절할 수 있는 메타렌즈 개발
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 세 가지 주요 특성인 세기, 위상, 편광을 동시에 모두 조절할 수 있는 유니버설 메타표면(universal metasurface)을 개발했다고 2일 밝혔다.
단일 소자로 빛의 세기, 위상, 편광을 모두 자유로이 조절할 수 있는 기술은 갈릴레이가 망원경으로 목성의 위성을 관측했던 광학 분야의 시초부터 제임스웹 망원경으로 130억 년 전 우주를 볼 수 있게 된 현재까지 풀리지 않는 난제로 남아있었다. 최근, 마이크로미터 이하 크기의 인공적인 구조체들을 유리 등 기존 소재 표면을 따라 배열해 빛의 특성을 높은 자유도로 조절할 수 있는 메타표면이 이러한 난제를 해결할 수 있는 기술이 될 수 있다는 기대감으로 관련 연구가 세계 여러 대학과 연구소, 기업에서 경쟁적으로 이뤄지고 있다.
이러한 메타표면은 현재 안경 두께의 천 분의 일인 수 마이크로미터 수준의 얇은 두께만으로도 렌즈의 역할을 할 수 있을 뿐만 아니라, 편광판, 컬러필터 등 기존 다른 광학 부품들의 기능도 동시에 수행할 가능성을 갖고 있어서 여러 종류의 광학필름이 필수적으로 들어가는 OLED 등 현재 상용 디스플레이의 두께를 현저히 줄이고 공정을 단순화시키거나 동영상 홀로그램, 증강현실(AR) 글래스, 라이다(LiDAR) 등의 새로운 응용의 광학 부품들에도 널리 적용될 수 있는 다재다능한 기술로 관심을 받고 있다.
하지만, 현재까지 보고된 메타표면들은 여전히 특정 색의 빛이 가지는 세 가지 특성 중 일부분만을 동시에 조절(예: 위상과 편광 또는 위상과 세기 등)할 수 있어, 하나의 소자로 세 특성을 완전히 조절하는 문제는 해결되지 못한 숙제로 남아있었다.
연구팀은 행렬과 관련된 수학적 원리에 착안해, 밀접한 두 층으로 이뤄진 유전체 메타표면이 빛의 세 가지 주요한 특성을 완벽히 조절할 수 있음을 이론적으로 밝히고, 이를 실험적으로 규명했다. 특히, 기존에 단일 소자로 불가능했던 벡터 홀로그램들을 제안하고 최초로 구현하는 데 성공했다. 학문적으로는 메타표면의 편광 선택적인 특성을 통해 맥스웰 방정식을 만족하는 두 가지 독립적인 임의의 3차원 전자기장 분포를 구현하는 방법을 최초로 보였다는 점에서 이번 연구는 큰 의의를 갖는다.
또한, 연구진은 유니버설 메타표면과 일반 렌즈의 조합만으로 임의의 편광 선택적인 선형 광학계의 구현이 가능함을 이론적으로 입증했는데, 이는 푸리에 변환 등을 포함한 복잡한 수학적 연산이나 데이터 처리를 광학적으로 간단하게 구현할 수 있음을 의미한다. 한 가지 예시로 연구팀은 확률론적 양자 CNOT 게이트 배열을 유니버설 메타표면과 렌즈만을 사용해 만들 수 있음을 보였으며, 이러한 원리는 양자 광학 뿐만 아니라, 광 통신, 광 신경망을 이용한 기계학습 기반 안면인식 등 여러 분야에서 활용될 수 있을 것으로 기대된다.
연구진은 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 조절을 해결했을 뿐만 아니라, 이를 바탕으로 모든 편광 선택적인 선형 광학계 구현이 이론적으로 가능함을 밝혔다ˮ며, 이어 "이번 연구에서 제안한 메타표면의 가능성을 활용하여 기존 한계를 극복한 응용 광소자를 적극적으로 개발할 계획ˮ이라고 언급했다.
신소재공학과 장태용 박사와 정준교 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 3일 字 출판됐다. (논문명 : Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission).
한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2022.12.02
조회수 11754
-
빛 소용돌이의 역학적 제어 구현
우리 대학 물리학과 서민교 교수, 김동하 박사, 신소재공학과 신종화 교수 공동연구팀이 자기장에 의해 자발적으로 생성되고 동역학적 움직임을 보이는 빛 소용돌이(optical vortex)를 구현했다고 13일 밝혔다.
빛 소용돌이는 전기장의 위상 분포의 공간적인 꼬임으로서, 기초 물리량중 하나인 궤도 각운동량을 전자기파에 싣는 역할을 수행한다.
전자기파의 궤도 각운동량은 고전적 또는 양자화된 회전 특성을 광학 기술에 도입할 수 있기에, 광 집게, 초고해상도 현미경, 고차원 광통신, 양자 얽힘 등 다양한 분야로의 응용으로 주목받아 왔다.
그러나 기존의 빛 소용돌이/궤도 각운동량 생성은 나선형의 구조적 특이점을 갖는 소자를 통해서만 구현되어 왔기에, 역학적 변화를 가할 수 없는 수동적 형태로서만 활용되어 왔다.
연구팀은 구조적 특이점 없이도 빛 소용돌이가 자발적으로 생성될 수 있는 플랫폼을 다층 박막 구조를 통해 구현하였다. 이 플랫폼은 반사율이 이상적으로 0이 되는 수학적 특이점을 가지는 위상학적 상(相)을 실 공간에 만들어 내며, 특이점을 중심으로 빛 소용돌이가 나타난다.
다층 박막 구조내의 자기 광학 효과를 이용하여, 위상학적 상의 생성과 소멸이 외부 자기장에 의해 제어된다. 나아가, 빛 소용돌이들이 외부 자기장 하에서 위상전하에 따라 다른 양상의 움직임들을 보이거나 빛 소용돌이-반(反)소용돌이 쌍이 생성되는 등의 준입자적 (quasiparticle) 양상을 관측했다.
연구팀이 개발한 플랫폼은 구성 물질에 따라 전기장이나 열에 의한 구동도 가능하며, 제작 방식의 단순화로 인해 여러 다양한 능동적 위상 광학 소자 개발 및 빛 소용돌이 생성 소자의 개발이 기대된다.
서민교 교수는 "자발적 생성 및 역학적 움직임을 보이는 등의 준입자적 양상을 가지는 빛 소용돌이가 구현될 수 있음을 보였다. 광학 시스템내의 다양한 위상학적 전자기장 텍스처와 그들의 준입자적 상호작용에 대한 연구의 시작점이 될 것이 기대된다.ˮ라고 말했다.
김동하 박사가 제1 저자이자 공동 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 (Nature)' 10월 13일 온라인 판본에 출판됐다. (논문명 : Spontaneous generation and active manipulation of real-space optical vortices).
이번 연구는 한국연구재단 중견연구, 기초연구실, 대학중점연구소지원사업의 지원을 받아 수행됐다.
2022.10.13
조회수 9588