
<Photo 1. (From left in the front row) Dr. Hyeokjin Kwon from Chemical and Biomolecular Engineering, Professor Hee Tak Kim, and Professor Seong Su Kim from Mechanical Engineering>
Korean researchers have ushered in a new era for electric vehicle (EV) battery technology by solving the long-standing dendrite problem in lithium-metal batteries. While conventional lithium-ion batteries are limited to a maximum range of 600 km, the new battery can achieve a range of 800 km on a single charge, a lifespan of over 300,000 km, and a super-fast charging time of just 12 minutes.
KAIST (President Kwang Hyung Lee) announced on the 4th of September that a research team from the Frontier Research Laboratory (FRL), a joint project between Professor Hee Tak Kim from the Department of Chemical and Biomolecular Engineering, and LG Energy Solution, has developed a "cohesion-inhibiting new liquid electrolyte" original technology that can dramatically increase the performance of lithium-metal batteries.
Lithium-metal batteries replace the graphite anode, a key component of lithium-ion batteries, with lithium metal. However, lithium metal has a technical challenge known as dendrite, which makes it difficult to secure the battery's lifespan and stability. Dendrites are tree-like lithium crystals that form on the anode surface during battery charging, negatively affecting battery performance and stability.
This dendrite phenomenon becomes more severe during rapid charging and can cause an internal short-circuit, making it very difficult to implement a lithium-metal battery that can be recharged under fast-charging conditions.
The FRL joint research team has identified that the fundamental cause of dendrite formation during rapid charging of lithium metal is due to non-uniform interfacial cohesion on the surface of the lithium metal. To solve this problem, they developed a "cohesion-inhibiting new liquid electrolyte."
The new liquid electrolyte utilizes an anion structure with a weak binding affinity to lithium ions (Li⁺), minimizing the non-uniformity of the lithium interface. This effectively suppresses dendrite growth even during rapid charging.
This technology overcomes the slow charging speed, which was a major limitation of existing lithium-metal batteries, while maintaining high energy density. It enables a long driving range and stable operation even with fast charging.
Je-Young Kim, CTO of LG Energy Solution, said, "The four years of collaboration between LG Energy Solution and KAIST through FRL are producing meaningful results. We will continue to strengthen our industry-academia collaboration to solve technical challenges and create the best results in the field of next-generation batteries."

<Figure 1. Infographic on the KAIST-LGES FRL Lithium-Metal Battery Technology>
Hee Tak Kim, Professor from Chemical and Biomolecular Engineering at KAIST, commented, "This research has become a key foundation for overcoming the technical challenges of lithium-metal batteries by understanding the interfacial structure. It has overcome the biggest barrier to the introduction of lithium-metal batteries for electric vehicles."
The study, with Dr. Hyeokjin Kwon from the KAIST Department of Chemical and Biomolecular Engineering as the first author, was published in the prestigious journal Nature Energy on September 3.
The research was conducted through the Frontier Research Laboratory (FRL, Director Professor Hee Tak Kim), which was established in 2021 by KAIST and LG Energy Solution to develop next-generation lithium-metal battery technology.
<(From Left) Professor Sun Kyu Han, Ph.D candidate Tae Wan Kim, Professor Kyeong Rok Choi, Professor Sang Yup Lee> With growing concerns over fossil fuel depletion and the environmental impacts of petrochemical production, scientists are actively exploring renewable strategies to produce essential industrial chemicals. A collaborative research team—led by Distinguished Professor Sang Yup Lee, Senior Vice President for Research, from the Department of Chemical and Biomolecular Engi
2025-10-13<(From Left to Right)Professor Jihan Kim, Ph.D. candidate Sinyoung Kang, Ph.D. candidate Younghoon Kim from the Department of Chemical and Biomolecular Engineering> Multivariate Porous Materials (MTV) are like a 'collection of Lego blocks,' allowing for customized design at a molecular level to freely create desired structures. Using these materials enables a wide range of applications, including energy storage and conversion, which can significantly contribute to solving environmenta
2025-09-09<(From left)Professor Jimin Park, Ph.D candidate Myeongeun Lee, Ph.D cadidate Jaewoong Lee,Professor Jihan Kim> Cells use various signaling molecules to regulate the nervous, immune, and vascular systems. Among these, nitric oxide (NO) and ammonia (NH₃) play important roles, but their chemical instability and gaseous nature make them difficult to generate or control externally. A KAIST research team has developed a platform that generates specific signaling molecules in situ from a si
2025-08-12<(From Left) Ph.D. Candidate Hyunmin Eun, Distinguished Professor Sang Yup Lee, , Dr. Cindy Pricilia Surya Prabowo> The application of systems metabolic engineering strategies, along with the construction of an electron channeling system, has enabled the first gram-per-liter scale production of lutein from Corynebacterium glutamicum, providing a viable alternative to plant-derived lutein production. A research group at KAIST has successfully engineered a microbial strain capable o
2025-07-14Accurately diagnosing the state of electric vehicle (EV) batteries is essential for their efficient management and safe use. KAIST researchers have developed a new technology that can diagnose and monitor the state of batteries with high precision using only small amounts of current, which is expected to maximize the batteries’ long-term stability and efficiency. KAIST (represented by President Kwang Hyung Lee) announced on the 17th of October that a research team led by Professors Kyeong
2024-10-17