“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학...
스마트폰 같은 딱딱한 전자기기는 안정적인 성능을 제공하지만 착용시 불편함을 주는 반면, 얇고 유연한 웨어러블 기기는 착용감은 뛰어나지만 부드러운 특성 때문에 정밀한 조작에 한계가 있다. 국내 연구진이 온도에 따라 딱딱함과 부드러움을 자유자재로 전환할 수 있는‘액체금속 전자잉크’를 개발해, 가변강성을 갖춘 전자기기의 새로운 패러다임을 열고 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 서울대 박성준 교수 연구팀, 우리 대학 신소재공학과 스티브 박 교수 연구팀과 공동연구를 통해, 상온에서 마이크로 스케일(머리카락보다 얇은 구조)의 미세 선폭 회로 인쇄가 가능하고 온도에 따라 딱딱함과 부드러움을 자유자재로 조절할 수 있는 액체금속 전자잉크를 개발했다고 4일 밝혔다. 연구팀이 개발한 전자잉크는 정밀한 인쇄가 가능한 물성과 우수한 전기전도성을 동시에 갖추고 있으며, 딱딱함과 부드러움을 자유자재로 조절할 수 있는 전자소자를 상온에서 정밀 제작할 수 있는 획기적인 기술이다. 이 전자잉크는 상용 인쇄회로 기판(PCB) 수준의 복잡한 고해상도 다층 회로 인쇄가 가능하며, 완성된 전자기기는 온도에 반응해 딱딱한 형태를 유연하게 변화시킬 수 있다. 연구팀은 기존 전자기기의 고정된 형태의 한계를 극복하기 위해 체온 근처(29.8 ℃)에서 녹는 액체금속 갈륨에 주목했다. 갈륨은 고체 상태에서는 매우 단단하지만 녹으면 부드러운 액체가 돼 큰 폭의 강성 변화가 가능하다. 하지만 기존 갈륨은 물방울처럼 뭉치려는 성질(높은 표면장력)과 액체 상태에서의 불안정성 때문에 정밀한 회로 제작이 어려웠고, 제조 과정에서 원치 않는 상변화가 일어나는 문제가 있었다. 이러한 갈륨의 한계를 극복하기 위해 산성도(pH) 제어 기반 액체금속 전자 잉크 프린팅 기술을 개발했다. 먼저, 마이크로 크기의 갈륨 입자를 디메틸 설폭사이드(Dimethyl Sulfoxide, 이하 DMSO)라는 중성 용매에 친수성 폴리우레탄 고분자와 함께 섞어 전자 잉크를 제작했다. 이때 DMSO 용매의 중성 상태 덕분에 갈륨 입자들이 고분자 매트릭스에 골고루 분산된 안정적인 고점성 잉크가 형성되며, 이를 통해 상온에서 고해상도 회로 인쇄가 가능해진다. 그리고 인쇄 후에는 가열 과정에서 DMSO 용매가 분해되면서 산성 물질을 생성하고, 이 산성 환경에서 갈륨 입자들 표면의 산화막이 제거돼 입자들이 물리적으로 연결되면서 전기가 통하고 강성을 조절할 수 있는 회로가 형성된다. 연구팀은 이러한 2단계 공정을 통해 상온에서는 안정적인 인쇄가 가능하면서도 완성 후에는 우수한 전기전도성과 가변강성 특성을 갖는 전자소자를 구현할 수 있었다. 개발된 전자잉크는 머리카락 굵기의 절반 (약 50μm)인 미세 선폭으로 정밀한 회로를 인쇄할 수 있으며, 우수한 전기전도도(2.27×10⁶ S/m)와 함께 1,465배나 되는 강성 조절 비율을 제공한다. 이는 플라스틱처럼 딱딱한 상태에서 고무처럼 말랑한 상태까지 자유자재로 변할 수 있음을 뜻한다. 또한 스크린 프린팅, 딥 코팅 등 기존 인쇄 방법들과 호환돼 고해상 대면적 회로 제작은 물론 복잡한 3차원 형태의 다양한 전자기기 제작을 가능하게 한다. 연구팀은 이 기술을 활용해 평상시에는 딱딱한 휴대용 전자기기로 사용하다가 몸에 착용하면 부드러운 웨어러블 헬스케어 기기로 변환되는 가변형 다목적 기기를 개발했다. 뿐만 아니라, 수술 시에는 딱딱한 상태로 정밀한 조작과 뇌 삽입이 가능하지만 뇌 조직 내에서는 부드럽게 변해 조직 내 염증반응을 최소화하는 뇌 탐침을 구현함으로써 이식용 소자로서의 활용 가능성도 입증했다. 정재웅 교수는 “전자 잉크 용매의 산성도 조절을 통해 갈륨 입자들을 전기·기계적 연결하는 독창적 기술로 액체금속 프린팅의 고질적인 문제를 해결하고 상온에서 초정밀 고해상 회로 제작을 가능하게 한 것이 이번 연구의 핵심”이라며 “하나의 기기가 상황에 따라 딱딱한 상태와 부드러운 상태로 자유자재로 변환될 수 있어 다목적 전자기기, 의료 기술, 로봇 분야 등에서 다양한 응용이 가능할 것”이라고 말했다. 전기및전자공학부 이시목 박사과정 학생과 부산대 이건희 교수가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 5월 30일 字에 게재됐다. (논문명 : Phase-Change Metal Ink with pH-Controlled Chemical Sintering for Versatile and Scalable Fabrication of Variable Stiffness Electronics, DOI/10.1126/sciadv.adv4921) 한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 중견연구지원사업, 기초연구실지원사업, 보스턴-코리아 공동연구 프로젝트, BK21 FOUR 사업의 지원을 받아 수행됐다.
우리 대학이 개발한 사족보행 로봇 ‘라이보(Raibo)’가 이제 계단, 틈, 벽, 잔해 등 불연속적이고 복잡한 지형에서도 고속으로 이동할 수 있게 됐다. 수직 벽을 달리고, 1.3m 폭의 간격을 뛰어넘으며, 징검다리 위를 시속 약 14.4Km로 질주하고, 30°경사·계단·징검다리가 혼합된 지형에서도 빠르고 민첩하게 움직이는 성능을 입증했다. 머지않아 라이보는 재난 현장 탐색이나 산악 수색 등 실질적인 임무 수행에 본격적으로 투입될 것으로 기대된다. 우리 대학 기계공학과 황보제민 교수 연구팀이 벽, 계단, 징검다리 등 불연속적이고 복잡한 지형에서도 시속 14.4km(4m/s)의 고속 보행이 가능한 사족 보행 로봇 내비게이션 프레임워크를 개발했다고 3일 밝혔다. 연구팀은 복잡하고 불연속적인 지형에서 로봇이 빠르고 안전하게 목표 지점까지 도달할 수 있도록 하는 사족 보행 내비게이션 시스템을 개발했다. 이를 위해 문제를 두 단계로 분해해 접근했는데, 첫째는 발 디딤 위치(foothold)를 계획하는 플래너(planner), 둘째는 계획된 발 디딤 위치를 정확히 따라가는 트래커(tracker)를 개발하는 것이다. 먼저, 플래너 모듈은 신경망 기반 휴리스틱을 활용한 샘플링 기반 최적화 방식을 통해 물리적으로 가능한 발 디딤 위치(foothold)를 빠르게 탐색하고, 시뮬레이션 롤아웃을 통해 최적 경로를 검증한다. 기존 방식들이 발 디딤 위치 외에도 접촉 시점, 로봇 자세 등의 다양한 요소를 함께 고려한 반면, 본 연구에서는 발 디딤 위치만을 탐색 공간으로 설정함으로써 계산 복잡도를 크게 낮췄다. 또한 고양이의 보행 방식에서 착안하여, 뒷발이 앞발이 밟았던 곳을 디디는 구조를 도입해 계산 복잡도를 다시 한번 크게 낮출 수 있었다. 두 번째, 트래커 모듈은 계획된 위치에 정확히 발을 디딜 수 있도록 학습되며, 트래킹 학습은 적절한 난이도의 환경에서 경쟁적으로 이루어진 생성 모델을 통해 진행된다. 트래커는 로봇이 계획된 위치에 정확하게 발을 디딜 수 있도록 강화학습을 통해 학습되며, 이 과정에서 ‘맵 생성기(map generator)’라는 생성 모델이 목표 분포를 제공한다. 이 생성 모델과 트래커는 동시에 경쟁적으로 학습돼, 트래커가 점진적으로 어려운 난이도에 적응할 수 있도록 설계됐다. 이후 학습된 트래커의 특성과 성능을 반영할 수 있도록, 트래커가 실행 가능한 디딤 위치 계획을 생성하는 샘플링 기반 플래너를 설계했다. 이 계층적 구조는 기존 기법 대비 계획 속도와 안정도 모두에서 우수한 성능을 보였으며, 실험을 통해 다양한 장애물과 불연속 지형에서의 고속 보행 능력과 처음 보는 지형에 대해서도 범용적으로 적용 가능함을 입증하였다. 황보제민 교수는 "기존에 상당히 큰 계산량을 요구하던 불연속 지형에서의 고속 네비게이션 문제를 오직 발자국의 위치를 어떻게 선정하는가의 간단한 관점으로 접근하였고, 고양이의 발디딤에서 착안하여 앞발이 디딘 곳을 뒷발이 딛도록 해 계산량을 획기적으로 줄일 수 있었다”며“보행 로봇이 극복할 수 있는 불연속 지형의 범위를 획기적으로 넓히고, 이를 고속으로 주행할 수 있도록 하여, 로봇이 재난현장 탐색이나 산악 수색 등 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다”고 말했다. 이번 연구 성과는 국제 학술지 사이언스 로보틱스(Science Robotics) 2025년 5월호에 게재됐다. (논문명 : High- speed control and navigation for quadrupedal robots on complex and discrete terrain, https://www.science.org/doi/10.1126/scirobotics.ads6192) 유튜브링크 : https://youtu.be/EZbM594T3c4?si=kfxLF2XnVUvYVIyk
짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다. 우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다. 연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭취한 사람의 대변에 해당되는 마우스 분변 샘플) 미생물을 이식하는 실험에서도 유사한 뇌종양 악화 반응이 관찰되었다. 이는 장내 미생물 변화가 뇌종양 악화의 핵심 요인임을 보여주는 증거이다. 특히, 연구팀은 장내 미생물 중 박테로이드 불가투스(Bacteroides vulgatus)라는 균이 고염식이에 따라 증가하고, 이 균이 프로피오네이트(propionate)라는 효소(Pccb)의 발현을 높인다는 사실을 발견했다. 그 결과, 장내에서 프로피오네이트 농도가 비정상적으로 상승했으며, 이 물질은 뇌종양 세포에서 산소가 충분한데도 마치 부족한 것처럼 ‘저산소유도인자-1알파(HIF-1α)’를 활성화시켰다. 이는 다시 ‘형질전환성장인자-베타(TGF-β)’를 증가시켜 제1형 콜라겐(COL1A1)을 과하게 만들게 하여 종양 세포가 더 쉽게 퍼지고 악성도를 높이게 하였다. 이러한 분자적 기전은 실제 뇌종양 중 가장 악성도가 높은 교모세포종(Glioblastoma) 환자의 암세포 데이터 분석을 통해서 임상 적용 가능성을 제시하였다. 마우스와 인간 종양세포에서 공통적으로 발현된 관련 유전자들로 인해 환자의 생존율이 낮아짐을 보여주었다. 이흥규 교수는 “이번 연구는 짠 음식 섭취가 장내 미생물 생태계를 변화시키고, 그 결과 생성된 대사산물이 뇌종양을 악화시킬 수 있음을 세계 최초로 분자 수준에서 규명한 것”이라며, “향후 뇌종양 환자를 대상으로 한 식이 조절 연구와 장내 미생물 기반 치료 전략 개발의 기초 자료로 활용될 수 있을 것”이라고 밝혔다. 공동 제1 저자로는 KAIST 김채원 박사(현. 미국 하버드 의과대학 부속 보스턴 어린이병원 박사후연구원)와 김현진 박사(KAIST 생명과학연구소 박사후연구원)가 참여했으며, 연구 결과는 생의학 분야 권위 학술지인 저널 어브 익스페리멘탈 메디슨(Journal of Experimental Medicine)에 5월 22일 자에 게재됐다. 논문 : Gut dysbiosis from high-salt diet promotes glioma via propionate-mediated TGF-β activation https://doi.org/10.1084/jem.20241135 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 개인기초연구사업 및 바이오의료기술개발사업의 일환으로 수행됐다.
우리나라는 금융 보안 소프트웨어 설치를 의무화한 유일한 국가다. 이것이 오히려 보안 위협에 취약할 수도 있다는 우려가 국내 연구진에 의해 밝혀졌다. KAIST 연구진은 안전한 금융 환경을 위한 현재 복잡하고 위험한 보안 프로그램을 강제로 설치하는 방식 대신, 웹사이트와 인터넷 브라우저에서 원래 설정한 안전한 규칙과 웹 표준을 따르는 ‘근본적 전환’이 필요하다고 설명했다. 우리 대학 전기및전자공학부 김용대·윤인수 교수 공동 연구팀이 고려대 김승주 교수팀, 성균관대 김형식 교수팀, 보안 전문기업 티오리(Theori) 소속 연구진이 공동연구를 통해, 한국 금융보안 소프트웨어의 구조적 취약점을 체계적으로 분석한 연구 결과에 대해 2일 밝혔다. 연구진은 북한의 사이버 공격 사례에서 왜 한국의 보안 소프트웨어가 주요 표적이 되는지에 주목했다. 분석 결과, 해당 소프트웨어들이 설계상의 구조적 결함과 구현상 취약점을 동시에 내포하고 있음이 드러났다. 특히 문제는, 한국에서는 금융 및 공공서비스 이용 시 이러한 보안 프로그램의 설치를 의무화하고 있다는 점이다. 이는 전 세계적으로도 유례가 없는 정책이다. 연구팀은 국내 주요 금융기관과 공공기관에서 사용 중인 7종의 주요 보안 프로그램(Korea Security Applications, 이하 ‘KSA 프로그램’)을 분석해 총 19건의 심각한 보안 취약점을 발견했다. 주요 취약점은 ▲키보드 입력 탈취 ▲중간자 공격(MITM) ▲공인인증서 유출 ▲원격 코드 실행(RCE) ▲사용자 식별 및 추적 이다. 일부 취약점은 연구진의 제보로 패치됐으나, 전체 보안 생태계를 관통하는 근본적 설계 취약점은 여전히 해결되지 않은 상태다. 연구진은 "이러한 보안 소프트웨어는 사용자의 안전을 위한 도구가 되어야 함에도 오히려 공격의 통로로 악용될 수 있다”며, 보안의 근본적 패러다임 전환이 필요하다고 강조했다. 연구팀은 국내 금융보안 소프트웨어들이 웹 브라우저의 보안 구조를 우회해 민감한 시스템 기능을 수행하도록 설계됐다고 지적했다. 브라우저는 원칙적으로 외부 웹사이트가 시스템 내부 파일 등 민감 정보에 접근하지 못하도록 제한하지만, KSA는 키보드 보안, 방화벽, 인증서 저장으로 구성된 이른바 ‘보안 3종 세트’를 유지하기 위해 루프백 통신, 외부 프로그램 호출, 비표준 API 활용 등 브라우저 외부 채널을 통해 이러한 제한을 우회하는 방식을 사용하고 있다. 이러한 방식은 2015년까지는 보안 플러그인 ActiveX를 통해 이뤄졌지만, 보안 취약성과 기술적 한계로 ActiveX 지원이 중단되면서 근본적인 개선이 이뤄질 것으로 기대됐다. 그러나 실제로는 실행파일(.exe)을 활용한 유사한 구조로 대체되면서, 기존의 문제를 반복하는 방식으로 이어졌다. 이로 인해 브라우저 보안 경계를 우회하고, 민감 정보에 직접 접근하는 보안 리스크가 여전히 지속되고 있다. 이러한 설계는 ▲동일 출처 정책(Same-Origin Policy, SOP)* ▲샌드박스** ▲권한 격리*** 등 최신 웹 보안 메커니즘과 정면으로 충돌한다. 연구팀은 실제로 이러한 구조가 새로운 공격 경로로 악용될 수 있음을 실증적으로 확인했다. *Same-Origin Policy(SOP, 동일 출처 정책): 웹 보안의 핵심 개념 중 하나로, 서로 다른 출처(origin)의 웹 페이지나 스크립트 간에 데이터에 접근하지 못하도록 제한하는 보안 정책 **샌드박스(Sandbox): 보안과 안정성을 위해 시스템 내에서 실행되는 코드나 프로그램의 활동을 제한된 환경 안에 가두는 기술 ***권한 격리(Privilege Separation): 시스템 보안을 강화하기 위해, 프로그램이나 프로세스를 여러 부분으로 나누고 각각에 최소한의 권한만 부여하는 보안 설계 방식 연구팀이 전국 400명을 대상으로 실시한 온라인 설문조사 결과, 97.4%가 금융서비스 이용을 위해 KSA를 설치한 경험이 있었으며, 이 중 59.3%는 ‘무엇을 하는 프로그램인지 모른다’고 응답했다. 실제 사용자 PC 48대를 분석한 결과, 1인당 평균 9개의 KSA가 설치돼 있었고 다수는 2022년 이전 버전이었다. 일부는 2019년 버전까지 사용되고 있었다. 김용대 교수는 “문제는 단순한 버그가 아니라, ‘웹은 위험하므로 보호해야 한다’는 브라우저의 보안 철학과 정면으로 충돌하는 구조”라며 “이처럼 구조적으로 안전하지 않은 시스템은 작은 실수도 치명적인 보안 사고로 이어질 수 있다”고 강조했다. 이어 “이제는 비표준 보안 소프트웨어들을 강제로 설치시키는 방식이 아니라, 웹 표준과 브라우저 보안 모델을 따르는 방향으로 전환해야 한다”며, “그렇지 않으면 KSA는 향후에도 국가 차원의 보안 위협의 중심이 될 것”이라고 덧붙였다. 우리 대학 김용대·윤인수 교수, 고려대 김승주 교수, 성균관대 김형식 교수가 연구를 주도했으며, 제1 저자인 윤태식 연구원<(주)티오리/KAIST>을 비롯해 정수환<(주)엔키화이트햇/KAIST>, 이용화<(주)티오리> 연구원이 참여했다. 세계 최고 권위의 보안 학회 중 하나인 ‘유즈닉스 시큐리티 2025(USENIX Security 2025)’에 채택됐다고 2일 밝혔다. ※ 논문명: Too Much of a Good Thing: (In-)Security of Mandatory Security Software for Financial Services in South Korea ※ 논문원문: https://syssec.kaist.ac.kr/pub/2025/Too_Much_Good.pdf 이번 연구는 정보통신기획평가원(IITP)의 RS-2024-00400302, RS-2024-00438686, RS-2022-II221199 과제의 지원을 받아 수행됐다. 데모 동영상 1) https://drive.google.com/file/d/1MAK-fLQ5VEsNtCu0ARpyWuflf1I2yLbv/view?usp=sharing 설명: 피해자가 해킹 사이트에 접속하게 되면 해킹 사이트는 설치된 키보드 보안 프로그램과 통신하여 피해자가 입력하는 키보드 입력을 가로채어 자신에게 전송하도록 설정할 수 있음. 이로 인해 피해자가 입력하는 키보드 입력들이 비밀번호 입력까지도 해커에게 전송됨. 일반적으로 웹 페이지에서 다른 프로그램이나 다른 사이트에 입력하는 키보드 입력을 가로채는 것이 불가능하지만 KSA를 이용해 키보드 입력을 가로챌 수 있음. 데모 동영상 2) https://drive.google.com/file/d/17xrxXuwejYvxbOSHDNLTr9G_vKWI0Lbm/view?usp=sharing 설명: 피해자가 해킹 사이트에 접속하게 되면 해킹 사이트는 KSA와 통신하여 피해자의 PC에 악성 파일을 다운로드 시킬 수 있고, 해당 파일을 이용해 민감한 저장소에 악성 프로그램을 설치할 수 있음. 설치된 악성 프로그램은 피해자가 PC를 재부팅하면 실행되며 해커가 원하는 코드를 임의로 실행할 수 있음. 데모 동영상에서는 단순히 해커가 원하는 코드를 실행할 수 있음을 보이기 위해 계산기 프로그램을 실행하였지만 실제 상황에서는 백도어 등을 해커가 피해자 PC에 설치할 수 있음. 일반적으로 웹페이지에서 시스템에서 동작하는 코드를 실행하는 것은 불가능하지만 KSA의 취약성을 이용해 시스템에서 동작하는 코드를 실행하여 악성 행위를 할 수 있음.
우리 대학 우주연구원(원장 한재흥)이 개발하여 2023년 5월 25일 18시 24분 나로우주센터에서 누리호 3차로 발사한 차세대소형위성2호가 핵심 임무인 국산 영상레이다(SAR, Synthetic Aperture Radar) 기술검증 및 전천후 지구관측 등을 지난 2년간 성공적으로 마쳤다. 차세대소형위성2호에 탑재된 영상레이다 시스템은 KAIST 우주연구원이 국내 최초로 설계, 제작, 지상 시험․평가를 거쳐 국산화한 기술로, 2025년 5월 25일 자로 2년간의 우주 궤도상 기술검증 임무를 성공적으로 완료했다. 특히 이 영상레이다 시스템이 100kg급 소형위성인 차세대소형위성2호에 탑재되어 관측임무를 완수했다는 점은, 우주용 영상레이다 시스템의 소형·경량화 기술 확보와 국내 위성기술 경쟁력 강화 측면에서 의미가 크다. 개발된 영상레이다는 전자파를 이용하는 능동 센서로, 주야간 기상조건에 관계없이 전천후 영상 획득이 가능한 장점이 있다. 어두운 밤이나 구름 또는 비가 많은 기상 환경에서도 관측할 수 있어 한반도처럼 강우와 구름이 빈번한 지역의 감시에 특히 유용하다. 위성 발사 이후, 차세대소형위성2호는 하루 평균 3~4회의 영상 촬영을 수행하며 기능점검과 기술검증을 진행해 왔다. 현재까지 1,200회 이상의 지구관측을 완료했으며, 위성의 임무 수명이 지난 현재에도 영상레이더의 성능은 양호하여, 관측 임무를 안정적으로 이어가고 있다. 국산화 기술 검증 단계임에도, KAIST 우주연구원은 극지연구소(소장 신형철) 및 국립공원연구원(원장 김진태)과 협력하여 2024년 3월 이후에는 북극 빙권 변화분석과 산림 영역 변화탐지를 위한 관심 지역을 우선 촬영하고 있다. KAIST 우주연구원은 북극 해빙 관심지역에 대한 반복 관측을 수행하고 있으며, 극지연구소 원격탐사빙권정보센터는 관측결과를 이용하여 시계열 기반의 분석을 통해 기후변화로 인한 해빙 면적 및 구조 변화를 정밀 추적하고 있다. 최근, 극지연구소는 차세대소형위성2호와 유럽 우주청(ESA)의 센티넬-1호(Sentinel-1)의 관측 데이터를 융합하여, 캐나다 밀른(Milne) 빙붕(Ice Shelf, 육지에서 흐른 빙하가 바다로 흘러 들어가면서 바다 위에 떠 있는 거대한 얼음층)에서 2021년부터 2025년 사이에 빙붕 뒤편의 얼음 호수 면적이 무려 15㎢나 증가한 사실을 포착했다. 이로 인해 구조적 불안정성이 심화되고 있으며, 이는 북극의 기후 변화가 가속화되고 있음을 보여주는 중요한 신호로 분석된다. 극지연구소 원격탐사빙권정보센터 김현철 센터장은 "이번 연구 결과는 북극 빙붕이 기후변화에 얼마나 취약한지를 보여주는 중요한 증거이며 앞으로도 차세대소형위성2호 영상레이다를 이용한 지속적인 관측과 분석을 통해 북극 환경 변화를 예측하고, 국제적인 협력을 강화해 나갈 것"이라고 밝혔다. 또한 “이번 연구 성과를 국제학술대회에 발표하며 북극 환경 변화에 대한 국민의 이해를 높이기 위해 교육과 홍보 활동도 전개할 예정”이라고 덧붙였다. 한편, 국립공원연구원 기후변화연구센터와 협력을 통해, 차세대소형위성2호의 영상자료는 기후변화에 따른 생물계절 변화탐지, 고지대 침엽수 고사 및 산사태와 같은 산림 생태계 변화 모니터링 연구에도 활용되고 있다. 아울러 산림지역의 탄소 저장량 공간 분포를 위성 영상으로 분석하고, 이를 현장 측정값과 비교하여 분석 정밀도를 높이는 연구도 병행 중이다. 영상레이다는 빛과 날씨에 영향을 받지 않을 뿐 아니라, 산불 발생 시 시야를 가리는 화염과 연기를 뚫고도 관측이 가능하다. 따라서 넓은 면적의 보호구역을 정기적으로 감시하는 데 매우 효과적인 도구로, 향후 산림 보호정책 수립에도 기여할 것으로 기대된다. 뿐만 아니라, KAIST 우주연구원은 차세대소형위성2호의 관측 영상 활용도 제고를 위해 우주항공청(윤영빈 청장)의 예산지원으로 위성에서 수신된 기술 검증 중심의 데이터를 연구기관들이 쉽게 활용할 수 있도록 표준 영상 제품으로 가공하는 시스템도 개발 중이다. 우주연구원 한재흥 원장은 “차세대소형위성2호는 국산화 개발에 성공한 데에 그치지 않고, 실제 환경 분석과 국가 연구에 직접 활용되어 성과를 내고 있다는 점에서 더욱 큰 의미가 있다”며 “앞으로도 차세대소형위성2호 영상레이다 데이터의 활용에 힘쓸 것”이라고 밝혔다. 이광형 KAIST 총장은 “차세대소형위성2호는 KAIST가 보유한 우주 기술력과 연구진의 혁신 역량을 집약한 결과물로, 이번 성과는 KAIST가 앞으로 우주 기술 인재 양성과 연구개발에 더 큰 가능성을 보여줄 수 있는 신호라고 생각하고 앞으로도 이에 더욱 박차를 가할 것”이라고 밝혔다.
병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다. 우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다. 연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ), 항생제 내성(mecA)>을 동시에 억제하는 짧은 DNA 조각(oligonucleotide)을 설계하고, 이를 탑재해 균내로 효과적으로 전달할 수 있는 나노입자(BTN)를 고안했다. 여기에 더해, 미세방울(microbubble, 이하 MB)을 사용해 포도상구균이 형성한 바이오필름인 미생물막의 투과성을 높인다. 연구팀은 두 가지 기술을 병용해, 세균의 증식과 내성 획득을 원천적으로 차단하는 이중 타격 전략을 구현했다. 이 치료 시스템은 두 단계로 작동한다. 먼저, 미세방울(MB)이 포도상구균이 형성한 세균성 생체막내 압력 변화로 나노입자(BTN)의 침투를 가능하게 만든다. 이어서, BTN이 생체막의 틈을 타 세균 내부로 침투해 유전자 억제제를 정확하게 전달한다. 이를 통해 포도상구균의 유전자 조절을 일으켜 생체막 재형성, 세포 증식, 그리고 항생제 내성 발현이 동시에 차단된다. 돼지 피부 감염 생체막 모델과 포도상구균 감염 마우스 상처 모델에서 시행한 실험 결과, BTN‑MB 치료군은 생체막 두께가 크게 감소했으며, 세균 수와 염증 반응도 현저히 줄어드는 뛰어난 치료 효과를 확인할 수 있었다. 이러한 결과는 기존 항생제 단독 치료로는 달성하기 어려운 수준이며, 향후 다양한 내성균 감염 치료에도 적용할 수 있는 가능성을 보여준다. 연구를 주도한 정현정 교수는 “이번 연구는 기존 항생제로는 해결할 수 없는 슈퍼박테리아 감염에 대해 나노기술, 유전자 억제, 물리적 접근법을 융합해 새로운 치료 해법을 제시한 것”이라며, “향후 전신 적용 및 다양한 감염 질환으로의 확장을 목표로 연구를 지속할 것”이라고 설명했다. 해당 연구는 우리 대학 생명과학과 정주연 학생과 일리노이대 안유진 박사가 제1 저자로 참여했으며, 국제학술지‘어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)’에 5월 19일 자로 온라인 게재됐다. ※ 논문 제목: Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection ※ DOI: https://doi.org/10.1002/adfm.202508291 한편, 이번 연구는 한국연구재단과 보건복지부의 지원을 받아 수행됐다.
기존 광센서가 측정할 수 없었던 빛의 방향성 정보를 정밀하게 구별할 수 있다면, 빛의 편광 정보를 활용하는 양자 반도체, 스핀 광소자, 라이다(LiDAR), 바이오 센서 등의 핵심 소재로 활용될 수 있다. 기존에는 복잡한 필터나 유기성 민감한 재료를 써야만 이 좌우회전 빛을 구분할 수 있었으나, KAIST 연구진이 복잡한 장치 없이 특정 방향의 원형편광(Circularly Polarized Light, CPL)에 선택적으로 잘 반응하는 편광 감지 센서를 개발하는데 성공했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 셀레늄(Se) 나노결정의 원자수준 카이랄성 제어를 이용해, 자외선부터 단파장 적외선까지 감지가능한 광대역 원형편광(CPL) 검출 반도체 소재를 세계 최초로 개발했다. 이 기술은 원형편광(CPL)을 실온에서 고감도로 감지할 수 있는 필름형 소재로, 빛으로 암호화된 정보를 해독하거나 양자비트(qubit)를 제어하는 등 양자 컴퓨팅과 스핀트로닉스, 광센서 기술의 핵심 소재로 주목받고 있다. 카이랄성(Chirality)은 좌우 비대칭성을 의미하며, 분자 수준뿐 아니라 광학, 의약, 생명현상 전반에 걸쳐 매우 중요한 물리적 특성이다. 특히 빛의 스핀 각운동량을 탐지하는 데 중요한 원형편광(CPL)을 구별하는 기술이다. 기존에 CPL 센서가 습기나 자외선에 약하고 열화되기 쉬운 문제로 상용화에 큰 한계가 있다는 점을 염두에 두고, 염지현 교수 연구진은 자연적으로 비대칭 결정 구조(카이랄성)를 갖는 무기 소재인 셀레늄에 주목했다. 셀레늄은 고유한 카이랄성 구조를 가지고 있으며, 성능 안정성을 반영구적으로 늘릴 수 있다. 하지만, 자연적으로는 원자 구조가 오른쪽과 왼쪽 방향성이 섞여서 존재하며, 한 쪽 방향성으로 제어하는 것은 매우 어려워 현실적인 활용에 큰 어려움이 있었다. 연구팀은 셀레늄(Se)을 나노 크기 막대 형태의 ‘셀레늄 나노로드’로 만들면서, 그 격자 구조가 왼쪽 또는 오른쪽 방향의 비대칭성(카이랄성)을 갖도록 제어할 수 있는 ‘카이랄성 전이 기술’을 개발했다. 연구진은 제작한 셀레늄 나노필름 소자가 자외선(180 nm)부터 단파장 적외선(2500 nm)에 이르기까지 넓은 파장 영역에서 CPL을 감지할 수 있음을 확인했으며, 광응답 비대칭성 지수(gres)*가 최대 0.4에 달하는 즉, 추가적인 편광 필터 없이 편광 방향을 정밀하게 구분하는 우수한 성능을 기록했다. *광응답 비대칭성 지수: 0는 좌우 빛을 전혀 구별못함이며, ±0.1은 미세한 구별 가능, ±0.4은 이상좌/우 원형편광을 매우 뚜렷하게 구별 가능하여 고성능 센서로 인정 또한, 13개월 이상 공기 중에서 성능 변화 없이 안정적으로 동작함을 실험적으로 확인하며 무기물 기반 광소자의 장기 안정성 측면에서도 매우 우수함을 입증했다. 기존에는 고가의 투가전자현미경(TEM) 장비를 통해 격자 카이랄성을 분석할 수 있었던 반면, 이번에 개발한 2차원 라만 광활성(2D ROA) 매핑 기법은 셀레늄 나노필름이 지닌 카이랄 구조(좌/우 비대칭성)가 필름 전체에 어떻게 분포되어 있는지를 지도처럼 시각화하고 정량 분석할 수 있는 새롭고 강력한 분석 기술이다. 염지현 교수는 “이번 연구는 반도체 광소재 분야에서 카이랄성 구현 및 분석의 새로운 방법론을 제시한 것”이라며 “빛의 원형편광 정보를 선택적으로 읽고 구분할 수 있는 만큼, 빛 기반의 양자 정보 처리나 저전력 반도체 기술 개발에도 응용될 수 있으며, 본 연구에 사용된 셀레늄 나노필름 합성 공정은 상온 환경에서 이루어지며, 유해 화학물질이나 고온 열처리가 불필요한 친환경 공정으로, 상온에서도 안전하게 실험이 가능하다” 라고 말했다. 이어 “양자광학, 보안광학, 생체 진단 및 이미지 센서 등 다양한 분야에 실제 응용 가능한 기반기술로 확장할 수 있을 것”이라고 말했다. 이번 연구는 부경대학교 나노융합공학전공 권준영 조교수(前 KAIST 박사후연구원)가 제1 저자로 참여했으며, KAIST 신소재공학과 김경민교수 팀과 공동연구로 진행되었다. 국제 학술지 네이처 커뮤니케이션(Nature Communication)에 5월 3일 자로 온라인 게재되었다. ※ 논문명: Enantioselective Se lattices for stable chiroptoelectronic processing media https://doi.org/10.1038/s41467-025-59091-9 이번 연구는 과학기술정보통신부 한국연구재단의 우수신진연구사업 등의 지원을 받아 수행되었다.
2025.05.28인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다. 연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링 기법을 핵심 기술로 한다. 그래프를 GPU 처리에 최적화된 자체 개발 압축 포맷인 HGF로 변환해 SSD와 같은 저장장치에 저장 및 관리한다. 기존 표준 포맷인 CSR로 저장할 경우, 1조 간선 규모의 그래프 크기가 9테라바이트(TB)에 이르지만, HGF 포맷을 활용하면 이 크기를 4.6테라바이트(TB)로 절반 가까이 줄일 수 있다. 또한 GPU에서는 메모리 정렬 문제로 그간 사용되지 않았던 3바이트의 주소 체계를 최초로 활용, GPU 메모리 사용량을 약 25% 절감했다. 또한, 엔비디아(NVIDIA) 쿠다(CUDA)의 통합 메모리(Unified Memory)에 전혀 의존하지 않고, 메모리 부족으로 인한 연산 실패를 방지할 수 있도록 메인 메모리와 GPU 메모리를 통합적으로 관리하는 GTask 전용 메모리 관리 기술을 주요 핵심 기술로 포함하고 있다. 김민수 교수 연구팀은 삼각형 개수 세기*와 같은 고난도 그래프 연산을 통해 지플럭스 기술의 성능을 검증했다. *삼각형 개수 세기: 그래프에서 서로 연결된 세 개의 정점이 이루는 삼각형 형태의 관계를 모두 찾고 개수를 세는 연산으로 데이터 분석 및 인공지능에서 널리 활용됨 약 700억 간선 규모의 그래프를 대상으로 한 실험에서, 기존의 최고 성능 기술은 고속 네트워크로 연결된 컴퓨터 25대를 이용해 약 2,000초가 걸리던 삼각형 개수 세기 연산을 지플럭스는 GPU가 장착된 단일 컴퓨터만으로 약 두배 빠른 1,184초 만에 처리하는 데 성공했다. 이는 단일 컴퓨터로 삼각형 개수 세기 연산을 성공적으로 처리한 현재까지 알려진 최대 규모의 그래프다. 김민수 교수는 “최근 그래프 RAG(검색증강생성), 지식 그래프, 그래프 벡터 색인 등 대규모 그래프에 대한 고속 연산 처리 기술의 중요성이 점점 커지고 있다”며, “지플럭스 기술이 이러한 문제를 효과적으로 해결할 것으로 기대한다”고 말했다. 이번 연구에는 전산학부 오세연, 윤희용 박사과정이 각각 제 1, 2 저자로, 김 교수가 창업한 그래프 딥테크 기업인 (주)그래파이 소속 한동형 연구원이 제3 저자로, 김 교수가 교신저자로 참여했고. 연구 결과는 IEEE 주최 국제데이터공학학술대회(ICDE, International Conference on Data Engineering)에서 지난 5월 22일에 발표됐다. ※ 논문제목: GFlux: A fast GPU-based out-of-memory multi-hop query processing framework for trillion-edge graphs ※ DOI: https://doi.ieeecomputersociety.org/10.1109/ICDE65448.2025.00075 한편, 이번 연구는 과기정통부 IITP SW스타랩과 한국연구재단 중견과제의 지원을 받아 수행됐다.
2025.05.27기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다. 물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다. 200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다. 이에 연구팀은‘홀로토모그래피(Holotomography, HT)’라는 첨단 광학 기술을 활용해 조직의 3차원 굴절률 정보를 측정하고, 여기에 인공지능 기반 딥러닝 알고리즘을 접목시켜 마치 가상의 염색(H&E)* 이미지 생성하는데 성공했다. * H&E(Hematoxylin & Eosin): 병리 조직을 관찰할 때 가장 널리 사용되는 염색법으로, 세포의 핵은 헤마톡실린(Hematoxylin)으로 파란색, 세포질은 에오신(Eosin)으로 분홍색으로 염색된다. 연구팀은 이 기술이 생성한 영상이 실제 염색된 조직 영상과 매우 유사하다는 점을 정량적으로 입증했으며, 다양한 장기와 조직에서도 일관된 성능을 보여줌으로써 차세대 병리 분석 도구로서의 범용성과 신뢰성을 입증했다. 또한, 토모큐브사의 홀로토모그래피 장비를 활용해 한국과 미국의 병원 및 연구기관과 공동으로 기술 실현 가능성을 검증함으로써, 이 기술이 실제 병리 연구 현장에 본격적으로 도입될 수 있음을 보여주었다. 박용근 교수는 “이번 연구는 병리학의 분석 단위를 2차원에서 3차원으로 확장한 매우 의미 있는 성과”라며, “앞으로 미세 종양 환경 내에서 암 종양의 경계나 주변 변역 세포들의 공간 분포를 분석할 수 있는 등 다양한 생의학 연구와 임상 진단에 널리 활용될 수 있을 것”이라고 전했다. 이번 연구는 박주연 석박사통합과정 학생이 제1 저자로 참여했으며, 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications)에 5월 22일자로 온라인 게재되었다. (논문명: Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining. https://doi.org/10.1038/s41467-025-59820-0) 본 연구는 한국연구재단 리더연구사업, 한국산업기술진흥원의 글로벌산업기술협력센터사업, 보건산업진흥원의 지원을 받았다.
2025.05.26전류없이 자석으로 정보 전달이 가능한 마그논(스핀파)으로 처리하는 마그논 홀 효과는 지금까지 2차원 평면에서만 가능하다고 알려져 있는데 그 한계를 뛰어넘는다면 어떨까? 마그논이 3차원 공간에서 활용가능하다면 입체적 회로 등 자유로운 설계부터 인간의 뇌 정보와 같이 차세대 뉴로모픽(뇌 모사형) 연산 구조 등 다양한 분야에서 활용될 수 있다. KAIST와 국제공동연구진은 기존에 마그논 개념을 뛰어넘어, 3차원 공간에서도 자유롭고 복잡하게 움직일 수 있다는 3차원 마그논 홀 효과를 세계 최초로 예측했다. 우리 대학 물리학과 김세권 교수가 독일 마인츠 대학의 리카르도 자르주엘라 박사와 공동연구를 통해, 복잡한 자석 구조(쩔쩔맴 자성체, topologically textured frustrated magnets) 내에서 마그논(스핀파)과 솔리톤(스핀들의 소용돌이)의 상호작용이 단순하지 않고 복잡하게 설명된다는 사실을 세계 최초로 밝혀냈다. 전자의 움직임처럼 정보를 전달할 수 있는 마그논(스핀 파동)은 전류를 쓰지 않고 정보를 전달해 열이 나지 않는 차세대 정보 처리 기술로 주목받고 있다. 지금까지의 마그논 연구는 스핀들이 한 방향으로 가지런히 정렬된 단순한 자석에서만 이루어졌고 이를 설명하는 수학도 비교적 단순한 ‘가환(Abelian) 게이지 이론’이었다. 연구팀은 쩔쩔맴 자성체와 같은 복잡한 스핀 구조에서는 마그논이 여러 방향에서 복잡하게 상호작용하고 얽히며 이 움직임은 기존보다 한 차원 높은 수학인 ‘비가환(non-Abelian) 게이지 이론’을 적용했고, 이를 세계 최초로 입증했다. 이번 연구는 향후 마그논을 이용한 저전력 논리소자, 토폴로지 기반 양자 정보 처리 기술 등에 응용될 수 있는 가능성을 제시함으로써 미래 정보기술의 판도를 바꿀 가능성을 보여주고 있다. 기존 선형 자성체에서는 자기 상태를 나타내는 값(질서 변수)이 벡터로 주어지며, 이에 기반한 마그노닉스 연구에서는 마그논이 스커미온과 같은 솔리톤 구조에서 이동할 때, U(1) 가환 게이지장이 유도된다고 해석되어 왔다. 이는 솔리톤과 마그논의 상호작용은 양자전기역학(QED)과 유사한 구조를 가지며, 이를 통해 2차원 자성체에서의 마그논 홀 효과와 같은 여러 실험적 결과를 잘 설명해 왔다. 하지만 연구팀은 이번 연구를 통해, 쩔쩔맴 자성체에서는 질서 변수가 단순한 벡터가 아닌 쿼터니언(quaternion)으로 표현되어야 하고, 그 결과 마그논이 느끼는 게이지장도 단순한 U(1) 가환 게이지장이 아닌 SU(3) 비가환 게이지장이 된다는 점을 이론적으로 최초 규명했다. 이는 곧 쩔쩔맴 자성체 안에는, 기존의 자성체에서 보이던 한두 가지 종류의 마그논이 아닌, 세 가지 종류의 마그논이 존재하며, 이들 각각이 솔리톤과 복잡하게 얿혀 상호작용하게 된다는 뜻이다. 이러한 구조는 전자기 힘을 설명하는 양자전기역학(QED)보다는, 양자색역학(QCD)과 유사한 구조를 갖는다는 점에서 큰 의미를 지닌다. 김세권 교수는 “이번 연구는 쩔쩔맴 자성체의 복잡한 질서 속에서 발생하는 마그논의 동역학을 설명할 수 있는 강력한 이론적 틀을 제시했다”며, “비가환 마그노닉스를 최초로 제시함으로 양자 자성 연구 전반에 영향을 줄 수 있는 개념적 전환점이 될 것”이라고 말했다. 이번 연구 결과는 독일 마인츠대학 리카르도 자르주엘라(Ricardo Zarzuela) 박사가 제 1저자로 물리 분야 세계적인 학술지 `피지컬 리뷰 레터스(Physical Review Letters)‘에 5월 6일 자로 게재됐다. ※ 논문명 : Non-Abelian Gauge Theory for Magnons in Topologically Textured Frustrated Magnets, Phys. Rev. Lett. 134, 186701 (2025) DOI: https://doi.org/10.1103/PhysRevLett.134.186701 이번 연구는 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2025.05.22