기존 군 훈련은 정형화된 방식에 의존하는 경우가 많아 전투원 개인의 특성이나 전투 상황에 맞춘 최적화된 훈련 제공에 한계가 있었다. 이에 우리 연구진이 전자섬유 플랫폼을 개발해 전투원 개개인의 특성과 전투 국면을 반영할 수 있는 원천기술을 확보했다. 이 기술은 전장에서 활용할 수 있을 만큼 튼튼함이 입증됐고, 많은 병력에게 보급할 수 있을 정도의 경제...
라이파이(Li-Fi)는 LED 불빛처럼 눈에 보이는 빛인 가시광선 대역(400~800 THz)을 활용한 무선통신 기술로, 기존 와이파이(Wi-Fi)보다 최대 100배 빠른 속도(최대 224Gbps)를 제공한다. 사용할 수 있는 주파수 할당의 제약이 없고 전파 혼신 문제도 적지만, 누구나 접근이 가능해서 보안에는 상대적으로 취약하다. 한국 연구진이 기존 광통신 소자의 한계를 뛰어넘어 송신 속도와 보안을 동시에 향상시킬 수 있는 라이파이의 새로운 플랫폼을 제시했다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국표준과학연구원(KRISS, 원장 이호성) 임경근 박사와 협력해, 차세대 초고속 데이터 통신으로 주목받는 ‘라이파이(Li-Fi)’ 활용을 위한 ‘온-디바이스 암호화 광통신 소자’ 기술을 개발했다고 24일 밝혔다. 조힘찬 교수팀은 친환경 양자점(독성이 적고 지속 가능한 소재)을 이용해 고효율 발광 트라이오드 소자를 만들었다. 연구팀이 개발한 소자는 전기장을 이용해 빛을 발생시키는 장치이다. 특히, ‘투과 전극에 존재하는 아주 작은 구멍(핀홀)’ 영역에 전기장이 집중되고 전극 너머로 투과되는데, 이 소자는 이를 이용하여 두 가지 입력 데이터를 동시에 처리할 수 있다. 이 원리를 이용해 연구팀은 ‘온-디바이스 암호화 광송신 소자’라는 기술을 개발했다. 이 기술의 핵심은 기기 자체에서 정보를 빛으로 바꾸면서 동시에 암호화까지 한다는 점이다. 즉, 복잡한 별도의 장비 없이도 보안이 강화된 데이터 전송이 가능하다. 외부양자효율(EQE)은 전기를 얼마나 효율적으로 빛으로 변환하는지를 나타내는 지표로, 상용화를 위한 기준은 일반적으로 약 20% 수준이다. 이번에 개발된 소자는 17.4%의 EQE를 기록했으며, 휘도(luminance) 또한 스마트폰 OLED 화면의 최대 밝기인 2,000nit를 크게 웃도는 29,000nit로, 10배 이상의 높은 밝기를 구현했다. 또한, 연구팀은 이 소자가 어떻게 정보를 빛으로 바꾸는지를 더 정확히 이해하기 위해, ‘과도 전계 발광 분석’이라는 방법을 사용하여, 아주 짧은 시간(수백 나노초 = 10억 분의 1초 단위) 동안 전압을 순간적으로 인가했을 때, 소자에서 발생하는 발광 특성을 분석했다. 이 분석을 통해 수백 나노초 단위에서 소자 내 전하들의 이동을 분석해 단일 소자 내에서 구현되는 이중채널 광변조의 작동 메커니즘을 규명했다. KAIST 조힘찬 교수는 “이번 연구는 기존의 광통신 소자의 한계를 뛰어넘어 송신 속도를 높이면서도 보안능력을 향상할 수 있는 새로운 통신 플랫폼을 제시했다”라고 언급했다. 이어 “추가 장비 없이도 보안을 강화하면서, 암호화와 송신을 동시에 구현하는 이번 기술은 향후 보안이 중요한 다양한 분야에서 폭넓게 응용될 수 있을 것”이라고 덧붙였다. KAIST 신소재공학과 신승민 박사과정이 제1 저자로 참여하고, 조힘찬 교수, KRISS 임경근 박사가 공동 교신 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 머터리얼즈(Advanced Materials)'에 5월 30일 자 출판됐으며, inside front cover 논문으로 선정됐다. ※ 논문명: High-Efficiency Quantum Dot Permeable electrode Light-Emitting Triodes for Visible-Light Communications and On-Device Data Encryption ※ DOI: https://doi.org/10.1002/adma.202503189 한편, 이번 연구는 한국연구재단, 국가과학기술연구회(NST) 및 한국산업기술진흥원의 지원을 받아 수행됐다.
생성형 AI 기술이 발전하면서 이를 악용한 온라인 여론 조작 우려가 커지고 있다. 이에 따른 AI 생성글 탐지 기술도 개발되었는데 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발돼, 짧고(평균 51자), 구어체 표현이 많은 한국어 뉴스 댓글에는 적용이 어려웠다. 우리 연구진이 한국어 AI 생성 댓글을 탐지하는 기술을 개발해서 화제다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 국가보안기술연구소(국보연)와 협력해, 한국어 AI 생성 댓글을 탐지하는 기술 'XDAC'를 세계 최초로 개발했다고 23일 밝혔다. 최근 생성형 AI는 뉴스 기사 맥락에 맞춰 감정과 논조까지 조절할 수 있으며, 몇 시간 만에 수십만 개의 댓글을 자동 생성할 수 있어 여론 조작에 악용될 수 있다. OpenAI의 GPT-4o API를 기준으로 하면 댓글 1개 생성 비용은 약 1원 수준이며, 국내 주요 뉴스 플랫폼의 하루 평균 댓글 수인 20만 개를 생성하는 데 단 20만 원이면 가능할 정도다. 공개 LLM은 자체 GPU 인프라만 갖추면 사실상 무상으로도 대량의 댓글 생성을 수행할 수 있다. 연구팀은 AI 생성 댓글과 사람 작성 댓글을 사람이 구별할 수 있는지 실험했다. 총 210개의 댓글을 평가한 결과, AI 생성 댓글의 67%를 사람이 작성한 것으로 착각했고, 실제 사람 작성 댓글도 73%만 정확히 구분해냈다. 즉, 사람조차 AI 생성 댓글을 정확히 구별하기 어려운 수준에 이르렀다는 의미다. AI 생성 댓글은 오히려 기사 맥락 관련성(95% vs 87%), 문장 유창성(71% vs 45%), 편향성 인식(33% vs 50%)에서 사람 작성 댓글보다 높은 평가를 받았다. 그동안 AI 생성글 탐지 기술은 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발되어 한국어의 짧은 댓글에는 적용이 어려웠다. 짧은 댓글은 통계적 특징이 불충분하고, 이모지·비속어·반복 문자 등 비정형 구어 표현이 많아 기존 탐지 모델이 효과적으로 작동하지 않는다. 또한, 현실적인 한국어 AI 생성 댓글 데이터셋이 부족하고, 기존의 단순한 프롬프팅 방식으로는 다양하고 실제적인 댓글을 생성하는 데 한계가 있었다. 이에 연구팀은 ▲14종의 다양한 LLM 활용 ▲자연스러움 강화 ▲세밀한 감정 제어 ▲참조자료를 통한 증강 생성의 네 가지 전략을 적용한 AI 댓글 생성 프레임워크를 개발해, 실제 이용자 스타일을 모방한 한국어 AI 생성 댓글 데이터셋을 구축하고 이 중 일부를 벤치마크 데이터셋으로 공개했다. 또 설명 가능한 AI(XAI) 기법을 적용해 언어 표현을 정밀 분석한 결과, AI 생성 댓글에는 사람과 다른 고유한 말투 패턴이 있음을 확인했다. 예를 들어, AI는 "것 같다", "에 대해" 등 형식적 표현과 높은 접속어 사용률을 보였고, 사람은 반복 문자(ㅋㅋㅋㅋ), 감정 표현, 줄바꿈, 특수기호 등 자유로운 구어체 표현을 즐겨 사용했다. 특수문자 사용에서도 AI는 전 세계적으로 통용되는 표준화된 이모지를 주로 사용하는 반면, 사람은 한국어 자음(ㅋ, ㅠ, ㅜ 등)이나 특수 기호(ㆍ, ♡, ★, • 등) 등 문화적 특수성이 담긴 다양한 문자를 활용했다. 특히, 서식 문자(줄바꿈, 여러 칸 띄어쓰기 등) 사용에서 사람 작성 댓글의 26%는 이런 서식 문자를 포함했지만, AI 생성 댓글은 단 1%만 사용했다. 반복 문자(예: ㅋㅋㅋㅋ, ㅎㅎㅎㅎ 등) 사용 비율도 사람 작성 댓글이 52%로, AI 생성 댓글(12%)보다 훨씬 높았다. XDAC는 이러한 차이를 정교하게 반영해 탐지 성능을 높였다. 줄바꿈, 공백 등 서식 문자를 변환하고, 반복 문자 패턴을 기계가 이해할 수 있도록 변환하는 방식이 적용됐다. 또 각 LLM의 고유 말투 특징을 파악해 어떤 AI 모델이 댓글을 생성했는지도 식별 가능하게 설계됐다. 이러한 최적화로 XDAC는 AI 생성 댓글 탐지에서 98.5% F1 점수로 기존 연구 대비 68% 성능을 향상시켰으며, 댓글 생성 LLM 식별에서도 84.3% F1 성능을 기록했다. 고우영 선임연구원은 "이번 연구는 생성형 AI가 작성한 짧은 댓글을 높은 정확도로 탐지하고, 생성 모델까지 식별할 수 있는 세계 최초 기술"이라며 "AI 기반 여론 조작 대응의 기술적 기반을 마련한 데 큰 의의가 있다"고 강조했다. 연구팀은 XDAC의 탐지 기술이 단순 판별을 넘어 심리적 억제 장치로도 작용할 수 있다고 설명했다. 마치 음주단속, 마약 검사, CCTV 설치 등이 범죄 억제 효과를 가지듯, 정밀 탐지 기술의 존재 자체가 AI 악용 시도를 줄일 수 있다는 것이다. XDAC는 플랫폼 사업자가 의심스러운 계정이나 조직적 여론 조작 시도를 정밀 감시·대응하는 데 활용될 수 있으며, 향후 실시간 감시 시스템이나 자동 대응 알고리즘으로 확장 가능성이 크다. 이번 연구는 설명가능 인공지능(XAI) 기반 탐지 프레임워크를 제안한 것이 핵심이며, 인공지능 자연어처리 분야 최고 권위 학술대회인 7월 27일부터 개최되는 'ACL 2025' 메인 콘퍼런스에 채택되며 기술력을 인정받았다. ※논문 제목: XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean ※논문원본: https://github.com/airobotlab/XDAC/blob/main/paper/250611_XDAC_ACL2025_camera_ready.pdf 이번 연구는 우리 대학 김용대 교수의 지도 아래 국보연 소속이자 우리 대학 박사과정인 고우영 선임연구원이 제1 저자로 참여했으며, 성균관대학교 김형식 교수와 우리 대학 오혜연 교수가 공동 연구자로 참여했다.
로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다. 우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다. 이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다. 특히, 소프트 엘라스토머(고무, 실리콘 등 쭉 늘렸다가 놓으면 다시 원래 모양으로 돌아오는 재료) 기반 센서가 갖는 느린 응답속도, 높은 히스테리시스*, 크립(오랫동안 힘을 가했을 때 재료가 천천히 변형되는 현상) 오차 등 구조적 문제를 극복하면서도 다양한 환경에서 정밀하게 작동하는 플랫폼으로 주목받고 있다. * 히스테리시스(Hysteresis): 한 번 받았던 힘이나 변화가 기억처럼 남아서, 똑같은 자극을 주더라도 항상 같은 결과가 나오지 않는 현상 T3DE 센서는 2차원 필름 위에 정밀하게 전극을 형성한 후, 열과 압력을 가해 3차원 구조로 성형하는 과정을 통해 제작된다. 특히 센서 상부의 전극과 지지 다리 구조는 목적에 따라 기계적 물성을 조절할 수 있도록 설계되어 있으며, 지지 다리의 두께, 길이, 개수 등 미세한 구조 매개변수를 조정함으로써 센서의 영률(Young’s modulus)*을 10Pa에서 1MPa까지 폭넓게 설정할 수 있다. 이 수치는 피부, 근육, 힘줄 등의 생체조직과 유사한 수준으로, 실제 생체 인터페이스용 센서로도 유용하다. * 영률(Young’s modulus): 재료의 강성을 나타내는 지표로, 이번 연구에서는 다양한 생체조직과 일치하는 수준까지 조절 가능함 이번에 개발된 T3DE 센서는 공기를 유전체로 활용해 전력 소비를 줄이는 동시에, 민감도, 응답속도, 온도 안정성, 반복 정밀도 측면에서도 우수한 성능을 보였다. 실험 결과, 해당 센서는 △민감도 5,884 kPa⁻¹ △응답속도 0.1ms(1,000분의 1초보다 짧은 시간) △히스테리시스 0.5% 이하 △5,000회 반복 측정에서도 정밀도 99.9% 이상을 유지하는 내구성을 입증했다. 연구팀은 이 센서를 활용해 고해상도 40×70 배열하여, 총 2,800개의 센서를 촘촘히 구성, 운동 중 발바닥의 압력 분포를 실시간 시각화하고, 손목 맥박 측정을 통한 혈관 건강 상태 평가 가능성도 확인했다. 또한, 상용 음향 센서 수준의 소리 감지 실험에서도 성공적인 결과를 얻었다. 즉, 이 센서는 발바닥 압력, 맥박, 소리까지 매우 정확하고 빠르게 측정할 수 있어서 운동, 건강, 소리 감지 등 다양한 분야에 활용될 수 있다. T3DE 기술은 증강현실(AR) 기반 외과 수술 훈련 시스템에도 적용됐다. 각 센서 요소마다 서로 다른 영률을 부여해 실제 생체조직과 유사한 강성을 구현했으며, 수술 절개 시 가해지는 압력 강도에 따라 시각·촉각 피드백을 동시에 제공하고, 너무 깊이 베거나, 위험한 부위를 건드리면 실시간 위험 경고 기능까지 갖춘 시스템이 구현되었다. 이는 의료 교육의 몰입도와 정확성을 획기적으로 향상할 수 있는 기술로 평가된다. 우리 대학 박인규 교수는 “이 센서는 설계 단계에서부터 정밀하게 조절할 수 있어 다양한 환경에서도 안정적으로 작동한다”며, “일상생활은 물론 의료, 재활, 가상현실 등 다양한 분야에서 쓸 수 있을 것”이라고 밝혔다. 본 연구는 ETRI 최중락 박사, KAIST 한찬규 석사, 이돈호 박사과정이 공동 제1저자로 참여했으며, 박인규 교수가 전체 연구를 총괄했다. 연구 결과는 세계적 권위의 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2025년 5월호에 게재됐으며, 해당 논문은 사이언스 어드밴시스 공식 SNS 채널(Facebook, Twitter)을 통해 전 세계에 소개되기도 했다. ※ 논문명: Thermoforming 2D films into 3D electronics for high-performance, customizable tactile sensing ※ DOI: 10.1126/sciadv.adv0057 이번 연구는 산업통상자원부, 한국연구재단, 한국산업기술평가관리원의 지원을 받아 수행됐다.
최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다. 우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다. 최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모델 내부의 얕은 블록들이 창의적 생성에 중요한 역할을 한다는 것을 발견하고, 특징 맵을 주파수 영역으로 변환 후, 높은 주파수 영역에 해당하는 부분의 값을 증폭하면 노이즈나 작게 조각난 색깔 패턴의 형태를 유발하는 것을 확인했다. 이에 따라, 연구팀은 얕은 블록의 낮은 주파수 영역을 증폭함으로써 효과적으로 창의적 생성을 강화할 수 있음을 보였다. 연구팀은 창의성을 정의하는 두 가지 핵심 요소인 독창성과 유용성을 모두 고려해, 생성 모델 내부의 각 블록 별로 최적의 증폭 값을 자동으로 선택하는 알고리즘을 제시했다. 개발된 알고리즘을 통해 사전 학습된 스테이블 디퓨전 모델의 내부 특징 맵을 적절히 증폭해 추가적인 분류 데이터나 학습 없이 창의적 생성을 강화할 수 있었다. 연구팀은 개발된 알고리즘을 사용하면 기존 모델 대비 더욱 참신하면서도 유용성이 크게 저하되지 않은 이미지를 생성할 수 있음을 다양한 측정치를 활용해 정량적으로 입증했다. 특히, 스테이블 디퓨전 XL(SDXL) 모델의 이미지 생성 속도를 대폭 향상하기 위해 개발된 SDXL-Turbo 모델에서 발생하는 모드 붕괴 문제를 완화함으로써 이미지 다양성이 증가한 것을 확인했다. 나아가, 사용자 연구를 통해 사람이 직접 평가했을 때도 기존 방법에 비해 유용성 대비 참신성이 크게 향상됨을 입증했다. 공동 제1 저자인 KAIST 한지연, 권다희 박사과정은 "생성 모델을 새로 학습하거나 미세조정 학습하지 않고 생성 모델의 창의적인 생성을 강화하는 최초의 방법론ˮ이라며 "학습된 인공지능 생성 모델 내부에 잠재된 창의성을 특징 맵 조작을 통해 강화할 수 있음을 보였다ˮ 라고 말했다. 이어 “이번 연구는 기존 학습된 모델에서도 텍스트만으로 창의적 이미지를 손쉽게 생성할 수 있게 됐으며, 이를 통해 창의적인 상품 디자인 등 다양한 분야에서 새로운 영감을 제공하고, 인공지능 모델이 창의적 생태계에서 실질적으로 유용하게 활용될 수 있도록 기여할 것으로 기대된다”라고 밝혔다. KAIST 김재철AI대학원 한지연 박사과정과 권다희 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)’에서 6월 15일 발표됐다. ※논문명 : Enhancing Creative Generation on Stable Diffusion-based Models ※DOI: https://doi.org/10.48550/arXiv.2503.23538 한편 이번 연구는 KAIST-네이버 초창의적 AI 연구센터, 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능, AI 연구거점 프로젝트, 점차 강화되고 있는 윤리 정책에 발맞춰 유연하게 진화하는 인공지능 기술 개발 연구 및 KAIST 인공지능 대학원 프로그램과제의 지원을 받았고 방위사업청과 국방과학연구소의 지원으로 KAIST 미래 국방 인공지능 특화연구센터에서 수행됐다.
우리 대학은 6월 18일부터 20일까지 서울에서 개최되는 세계 최대 컴퓨터학회인 ACM(Association for Computing Machinery)이 주관하는 프로그래밍 언어 분야 최고 권위의 국제 학술대회인 ‘PLDI (Programming Language Design and Implementation) 2025’에서 기조 강연과 탁월한 연구 성과를 발표하며 KAIST의 세계적 위상을 다시 한 번 입증했다고 18일 밝혔다. 학술대회 첫날 기조강연자로 초대된 전산학부 류석영 교수는 “기술 및 사회적 공익을 위한 프로그래밍 언어 연구: 프로그래밍 언어는 공익을 위해 무엇을 할 수 있을까요?(Programming Language Research for Technical and Social Good: What PL Can Do for Good?)”라는 제목으로 강연을 진행한다. 이번 강연에서 류 교수는 자바스크립트와 같은 언어의 정형화(formalization)를 통한 소프트웨어 안전성 향상뿐 아니라, 프로그래밍 언어 연구가 사회적으로도 다양성(Diversity), 형평성(Equity), 포용성(Inclusion) 확산에 기여할 수 있는 방식을 사례를 통해 제시할 예정이다. 류석영 교수는 “프로그래밍 언어는 기술을 넘어서 공익을 실현하는 수단이 될 수 있다”며 “KAIST 연구진의 이러한 노력이 국내외 연구자들에게도 영감을 줄 수 있기를 기대한다”고 말했다. PLDI는 지난 46년간 전산학 전체에 깊은 영향을 미치는 중요한 논문이 다수 발표된 유서 깊은 학술대회다. 프로그래밍 언어와 컴파일러 등 소프트웨어 전반의 기초가 되는 핵심 기술을 발표하고 있다. 전산학부의 강지훈 교수, 양홍석 교수, 허기홍 교수 연구팀은 이번 PLDI 2025에서 총 5편의 논문을 발표하며, 전체 채택 논문 89편 중 6.7%에 해당하는 비중을 차지했다. 이는 한국 내 대학 중 가장 높은 수치로, 포항공대가 2편을 발표했다. 특히 강지훈 교수는 지난해에 이어 올해도 단독으로 3편의 논문을 발표하며 국내 연구자의 지속적인 두각을 나타냈다. 강 교수는 “학생들이 수년간 공들여 연구한 결과가 세계 최고 학회에서 인정받아 기쁘다”며, “현실 문제 해결에 밀착된 연구를 통해 산업계의 난제를 풀어나가고 있다”고 밝혔다. 다섯 편의 논문은 멀티코어 컴퓨팅 시스템에서의 병렬 자료구조 성능 향상 및 검증, 컴파일러의 신뢰성 확보, 프로그래밍 언어 의미론 연구 등을 중심으로, 운영체제·데이터베이스 등 고성능 시스템 소프트웨어의 품질 향상에 기여할 것으로 기대된다. 이번 학회에 발표되는 5개의 논문은 아래와 같다: 1. 멀티코어 컴퓨팅 시스템에서 동작하는 고성능 병렬 자료구조의 효율 향상(강지훈 교수) 2. 읽기-복사-쓰기(RCU) 방식의 올바름을 현실적인 조건에서 처음으로 검증(강지훈 교수) 3. 고성능 병렬 자료구조인 순회 자료구조의 올바름을 쉽게 증명할 수 있는 방법론 개발(강지훈 교수) 4. 컴파일러의 올바름을 저비용, 고효율로 검사하는 새로운 기술 제시(허기홍 교수) 5. 특이 함수(singular function)를 지원하는 프로그래밍 언어의 첫 번째 의미론 제시(양홍석 교수) 류석영 학부장은 “KAIST 전산학부는 학문적 깊이와 사회적 책임을 동시에 지향하는 연구를 꾸준히 이어가고 있으며, 이번 PLDI 2025에서 그 성과를 세계와 공유할 수 있어 매우 뜻깊다”라고 밝혔다. 해당 논문들은 ACM 공식 저널 형식의 PACMPL(Proceedings of the ACM on Programming Languages)에 게재됐으며, PLDI 2025 학술대회 현장에서 발표될 예정이다. 한편 이번 연구는 한국연구재단 선도연구센터, 우수신진연구자지원사업, 정보통신기획평가원(IITP) 정보통신·방송 기술개발사업, 인공지능반도체 고급인재 양성사업, 대학ICT연구센터, 삼성전자 미래기술육성센터, Amazon의 지원을 받아 수행됐다.
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다. 우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다. 최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다. 연구팀이 개발한 차세대 스마트 윈도우 기술인 RECM (Reversible Electrodeposition and Electrochromic Mirror)은 단일 구조의 *전기변색 소자를 기반으로, 가시광선(빛)과 근적외선(열)의 투과율을 능동적으로 조절할 수 있는 스마트 윈도우 시스템이다. *전기변색 소자: 전기 신호에 따라 광학적 특성이 변하는 특성을 가진 장치 특히, 기존 금속 *증착 방식의 스마트 윈도우에서 문제로 지적돼 온 외부 반사광에 의한 눈부심 현상을 변색 소재를 함께 적용해 효과적으로 억제함으로써, 건물 외벽에 활용 가능한 ‘보행자 친화형 스마트 윈도우’를 구현했다. *증착: 전기화학 반응을 이용해 Ag+와 같은 금속 이온을 전극 표면에 고체 형태로 입히는 과정 이번 연구에서 개발된 RECM 시스템은 전압 조절에 따라 세 가지 모드로 작동된다. 모드 I(투명 모드)는 일반 유리처럼 빛과 열을 모두 통과시켜 겨울철 햇빛을 실내로 유입시키는 데 유리하다. 모드 II(변색 모드)에서는 레독스 반응(산화-환원 반응)을 통해 *프러시안 블루(PB)와 **DHV+⦁ 화학종이 형성되며 창이 짙은 파란 색으로 변한다. 이 상태에서는 빛은 흡수되고 열은 일부만 투과돼, 프라이버시 확보와 동시에 적절한 실내 온도 조절이 가능하다. *프러시안 블루: 전기 자극에 따라 무색과 파란색으로 전환되는 전기변색 물질 **DHV+⦁: 전기 자극 시 생성되는 라디칼 상태의 변색 분자 모드 III(변색 및 증착 모드)는 은(Ag+)이온이 환원 반응을 통해 전극 표면에 증착돼 빛과 열을 반사하는 동시에, 변색 물질이 반사광을 흡수함으로써 외부 보행자의 눈부심까지 효과적으로 차단할 수 있다. 연구팀은 미니어처 모델 하우스를 활용한 실험을 통해 RECM 기술의 실질적인 실내 온도 저감 효과를 검증했다. 일반 유리창을 적용한 경우, 실내 온도는 45분 만에 58.7℃까지 상승했다. 반면, RECM을 모드 III로 작동시킨 결과 31.5℃에 도달해 약 27.2℃의 온도 저감 효과를 나타냈다. 또한, 전기 신호만으로 각 상태 전환이 가능해 계절, 시간, 사용 목적에 따라 즉각적으로 대응할 수 있는 능동형 스마트 기술로 평가받고 있다. 이번 연구의 교신저자인 우리 대학 문홍철 교수는 “이번 연구는 가시광 조절에 국한된 기존 스마트 윈도우 기술에서 더 나아가 능동적 실내 열 제어는 물론 보행자의 시야 안전까지 종합적으로 고려한 진정한 스마트 윈도우 플랫폼을 제시한 것”이라며, “도심 건물부터 차량, 기차 등 다양한 응용 가능성이 기대된다”고 밝혔다. 이번 연구 결과는 에너지 분야 국제 저명 학술지인 ‘에이시에스 에너지 레터스(ACS Energy Letters)’ 10권 6호 지에 2025년 6월 13일 자로 게재됐다. ※ 논문명: Glare-Free, Energy-Efficient Smart Windows: A Pedestrian-Friendly System with Dynamically Tunable Light and Heat Regulation ※ DOI: 10.1021/acsenergylett.5c00637 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 한국기계연구원 기본사업의 지원을 받아 수행됐다.
기존 신약 개발에서는 수많은 농도 조건에서 반복 실험을 거쳐 약물 간 상호작용을 분석하고, 저해상수를 추정하는 방식이 사용돼 왔다. 이 방법은 지금까지 6만 편 이상의 논문에 활용될 만큼 널리 쓰였다. 그런데 최근, 학부생이 제 1저자로 참여한 국내 연구진이 단 하나의 저해제 농도만으로 저해상수를 정확히 추정할 수 있는 획기적인 분석법을 제안해 주목을 받고 있다. 우리 대학 수리과학과 김재경 교수 연구팀(IBS 의생명 수학 그룹 CI)이 충남대(총장 김정겸) 약대 김상겸 교수팀과 기초과학연구원(원장 노도영, IBS) 의생명수학그룹과 공동연구를 통해, 단 하나의 실험으로 약물 저해 효과*를 예측할 수 있다고 26일 밝혔다. *약물 저해 효과: 한 약물이 특정 효소의 작용을 억제함으로써 다른 약물의 대사(분해 및 처리 과정) 또는 생리학적 효과에 영향을 주는 현상 공동 연구팀은 수학적 모델링과 오차 지형 분석을 통해 정확도 향상에 기여하지 않는 저해제 농도를 제거하고, 단 하나의 농도만으로도 저해상수를 정확하게 추정할 수 있는 새로운 분석법 ‘50-BOA’를 제안했다. 이 기법을 실제 실험 데이터에 적용한 결과, 기존보다 75% 이상 실험 효율이 향상됐으며, 정확도 역시 개선됐다. 이번 연구는 반복 실험에 따른 자원 소모를 줄이고 해석의 편차를 최소화함으로써, 신약 개발 과정의 효율성을 높일 수 있는 새로운 접근법을 제시했다는 점에서 큰 의의가 있다. 또한, 수학적 접근이 생명과학 실험 설계를 어떻게 혁신할 수 있는지를 보여주는 대표적인 성과로 평가된다. 저해상수는 약물 효과뿐 아니라, 병용 투여 시 발생할 수 있는 약물상호작용을 예측하고 방지하는 데 핵심적인 지표로 활용된다. 실제로 미국 식품의약국(FDA)은 신약 개발 과정에서 약물상호작용의 가능성을 예측하기 위해 저해상수를 포함한 효소의 저해 특성을 사전에 평가할 것을 권고하고 있다. 전통적으로 저해상수는 다양한 기질 및 저해제 농도에서 측정된 대사 속도 데이터에 수학 모델을 적합해 추정해왔다. 그러나 이러한 방식에도 불구하고, 동일한 기질-저해제 조합에 대해 연구마다 추정값이 10배 이상 차이나는 사례들이 보고돼, 신약 개발 과정에서 약물의 효과와 부작용을 정확히 예측하는 데 어려움이 있었다. 연구팀은 저해상수 추정 과정을 수학적으로 분석한 결과, 기존 방식에서 활용되는 데이터의 절반 이상이 실제 추정에 불필요하거나, 오히려 왜곡을 초래할 수 있음을 밝혀냈다. 즉, 저해제 농도를 다양하게 사용하는 기존 방식보다, 충분히 높은 저해제 농도 하나에서 추정한 결과가 더 정확하고 효율적일 수 있다는 점을 규명한 것이다. 나아가 저해제 농도와 저해상수 간의 관계를 나타내는 식을 정칙화로 추가해, 정확도를 더욱 높인 새로운 분석법, ‘50-BOA’를 개발했다. 50-BOA는 단 하나의 저해제 농도만으로도 저해상수를 정확하게 추정할 수 있어, 실험 횟수를 크게 줄이면서도 오히려 정확도를 높인 획기적인 기법이다. 연구팀은 이 방법을 실제 약물 데이터에 적용해, 기존보다 75% 이상 적은 데이터만으로도 저해상수를 정확하게 추정해냈다. 또한, 누구나 쉽게 활용할 수 있도록 엑셀 기반의 사용자 친화적인 분석 소프트웨어도 개발자 플랫폼인 깃허브(https://github.com/Mathbiomed/50-BOA)에 함께 공개했다. 충남대 김상겸 교수는 “이번 연구는 수십 년간 정형화된 약물 실험 설계를 근본적으로 재검토하게 만들었다”며, “단순한 실험 효율 향상을 넘어, 약효와 부작용 예측의 정확도를 높일 수 있는 새로운 표준이 될 것으로 기대한다”고 밝혔다. 또한, 우리 대학 김재경 교수는 “수학이 실험 설계를 바꾸고, 생명과학 분야의 연구 효율성과 재현성을 근본적으로 높일 수 있음을 보여주는 대표적 사례다”고 밝혔다. 이번 연구 논문은 우리 대학 융합인재학부 장형준 학사과정과 수리과학과 송윤민 박사가 공동 제1 저자로 참여하였고 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 2025년 6월 5일 자에 게재됐다. ※ 논문명 : Optimizing enzyme inhibition analysis: precise estimation with a single inhibitor concentration ※ 저자 정보 : 장형준 (KAIST 융합인재학부, 공동 제1 저자), 송윤민 (IBS 의생명수학그룹 (전 KAIST 수리과학과 소속), 공동 제1저자), 전장수(충남대 약대, 연구교수, 공동저자), 윤휘열(충남대 약대, 교수, 공동저자), 김상겸(충남대 약대, 교수, 교신저자), 김재경 (KAIST 수리과학과, 교신저자) ※ DOI: https://doi.org/10.1038/s41467-025-60468-z 한편 이번 연구는 한국연구재단, 기초과학연구원, KAIST의 지원을 받아 수행됐다.
2025.06.16임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일 밝혔다. 이번 연구는 다수의 반응물을 동시에 투입해 진행하는 비대칭 촉매 반응을 고해상도 불소 핵자기공명분광기(19F NMR)를 활용해 정밀 분석한 세계 최초의 기술로, 신약 개발 및 촉매 최적화 등 다양한 분야에 획기적인 기여가 기대된다. * 인공지능 기반 자율합성: 인공지능(AI)을 활용해 화학 물질 합성 과정을 자동화하고 최적화하는 첨단 기술로, 미래 실험실의 자동화 및 지능형 연구 환경을 구현할 핵심 요소로 주목받고 있다. AI가 실험 조건을 예측·조절하고 결과를 해석해 후속 실험을 스스로 설계함으로써 반복 실험 수행 시 인간 개입을 최소화해 연구 효율성과 혁신성을 크게 높인다. 현재 자율합성 시스템은 반응 설계부터 수행까지는 자동화가 가능하지만, 반응 결과 분석은 전통적 장비를 활용한 개별 처리 방식에 의존하고 있어 속도 저하와 병목 현상이 발생하며 고속 반복 실험에는 적합하지 않다는 문제점이 제기돼 왔다. 또한, 1990년대에 제안된 다기질 동시 스크리닝 기법은 반응 분석의 효율을 극대화할 전략으로 주목받았지만, 기존 크로마토그래피 기반 분석법의 한계로 인해 적용 가능한 기질 수가 제한적이었다. 특히 원하는 광학 이성질체만 선택하여 합성하는 비대칭 합성 반응에서는 10종 이상의 기질을 동시에 분석하는 것이 불가능에 가까웠다. 이러한 한계를 극복하기 위해, 연구팀은 다수의 반응물을 하나의 반응 용기에 투입하여 동시에 비대칭 촉매 반응을 수행한 뒤 불소 작용기를 생성물에 도입하고, 자체 개발한 카이랄 코발트 시약을 적용해 모든 광학 이성질체를 명확하게 정량 분석할 수 있는 불소 핵자기공명분광기(19F NMR) 기반 다기질 동시 스크리닝 기술을 구현했다. 연구팀은 19F NMR의 우수한 분해능과 민감도를 활용해, 21종 기질의 비대칭 합성 반응을 단일 반응 용기에서 동시에 수행하고 생성물의 수율과 광학 이성질체 비율을 별도의 분리 과정 없이 정량 측정하는 데 성공했다. 김현우 교수는 “여러 기질을 한 반응기에 넣고 비대칭 합성 반응을 동시에 수행하는 것은 누구나 할 수 있지만, 생성물 전체를 정확하게 분석하는 것은 지금까지 풀기 어려운 과제였다”며, “세계 최고 수준의 다기질 스크리닝 분석 기술을 구현함으로써 AI 기반 자율합성 플랫폼의 분석 역량 향상에 크게 기여할 수 있을 것으로 기대된다”고 말했다. 이어 “이번 연구는 신약 개발에 필수적인 비대칭 촉매 반응의 효율성과 선택성을 신속히 검증할 수 있는 기술로, AI 기반 자율화 연구의 핵심 분석 도구로 활용될 전망이다”라고 밝혔다. 이번 연구에는 우리 대학 화학과 김동훈 석박통합과정 학생(제1 저자), 최경선 석박통합과정 학생(제2 저자) 가 참여했으며, 화학 분야 세계적 권위의 국제 학술지 미국화학회지(Journal of the American Chemical Society) 에 2025년 5월 27일 자 온라인 게재됐다. ※ 논문명: One-pot Multisubstrate Screening for Asymmetric Catalysis Enabled by 19F NMR-based Simultaneous Chiral Analysis ※ DOI: 10.1021/jacs.5c03446 이번 연구는 한국연구재단 중견연구자 지원사업, 비대칭 촉매반응 디자인센터, KAIST KC30 프로젝트의 지원을 받아 수행됐다.
2025.06.16색은 빛의 파장이 인간의 눈에 인식되는 방식으로, 단순한 미적 요소를 넘어 물질의 성분이나 상태 같은 중요한 과학적 정보를 담고 있다. 분광기는 빛을 파장별로 분해해 물성을 분석하는 광학 장비로, 재료 분석, 화학 성분 검출, 생명과학 연구 등 다양한 과학 및 산업 분야에서 폭넓게 사용되고 있다. 기존의 고분해능 분광기는 크고 복잡해 일상 전반에 사용이 어려웠으나, 우리 연구진이 개발한 초소형 고해상도 분광기 덕분에 앞으로는 스마트폰이나 웨어러블 기기 속에서도 빛의 색 정보를 활용할 수 있을 전망이다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 이중층 무질서 메타표면*을 이용한 복원 기반 분광기 기술을 개발하는 데 성공했다고 13일 밝혔다. *이중충 메타표면: 두 겹의 무질서한 나노 구조층을 통해 빛을 복잡하게 산란시켜, 파장별로 고유하고 예측 가능한 스페클 패턴을 만들어내는 혁신적 광학 소자 기존의 고분해능 분광기는 수십 센티미터 수준으로 폼 팩터가 크고, 정확도를 유지하기 위한 복잡한 교정 과정이 필요하다. 이는 근본적으로 무지개가 색을 분리하듯 빛의 파장을 빛의 진행 방향으로 분리하는 전통적인 분산 부품의 작동 원리에서 기인한다. 이 때문에, 빛의 색 정보가 일상 전반에 유용하게 활용될 수 있음에도 분광 기술은 실험실이나 산업 제조 현장 수준으로 그 활용성이 제한되고 있다. 연구팀은 빛의 색 정보를 빛의 진행 방향으로 일대일 대응시키는 회절격자나 프리즘을 사용하는 기존의 분광 패러다임에서 벗어나 설계된 무질서 구조를 광학 부품으로 활용하는 방식을 고안했다. 이때, ‘복잡한 무작위적 패턴(스페클*)’을 정확하게 구현하기 위해 수십-수백 나노미터 크기의 구조체를 활용해 빛의 전파 과정을 자유롭게 조절할 수 있는 메타표면을 활용하였다. * 스페클: 여러 파면의 빛이 간섭해 만들어지는 불규칙한 밝기의 광 패턴 구체적으로, 이중층 무질서 메타표면을 구현해 파장 특이적인 방식으로 스페클 패턴을 생성하고, 카메라로 측정된 무작위 패턴을 보고 그 빛의 정밀한 색 정보(파장)를 복원 해내는 방식을 개발했다. 그 결과, 단 한 장의 영상 촬영만으로 손톱보다 작은(1cm 미만) 장치에서 1 나노미터(nm) 수준의 고해상도로 가시광-적외선 (440~1,300nm) 범대역의 빛을 정확하게 측정하는 신개념 분광기 기술을 개발하는 데 성공했다. 이번 연구에 제1 저자로 참여한 이동구 연구원은 “이번 기술은 상용 이미지 센서에 직접 통합된 방식으로 구현돼, 앞으로는 모바일 기기에 내장된 형태로 일상에서도 빛의 파장 정보를 손쉽게 취득하고 이용할 수 있을 것으로 기대된다”라고 밝혔다. 장무석 교수는 “R(빨강), G(초록), B(파랑) 3가지 색 성분으로만 구분해서 인식되는 기존 RGB 삼색 기반 머신 비전 분야에서 한계를 뛰어넘는 기술로 활용 분야도 다양하다”며, “음식 성분 분석, 농작물 상태 진단, 피부 건강 측정, 환경 오염 감지, 바이오·의료 진단 등 실험실 수준의 기술을 일상 수준의 머신 비전 기술로 지평을 넓힌 기술로 다양한 활용 연구가 기대된다” 라고 말했다. 이어 “또한, 파장과 공간 정보를 고해상도로 동시에 기록하는 초분광 영상이나, 여러 파장의 빛들을 정밀하게 원하는 형태로 제어하는 3D 광집속 기술, 아주 짧은 시간 동안 일어나는 현상을 포착하는 초고속 이미징 기술 등 다양한 첨단 광학 기술로 확장도 가능하다”라고 밝혔다. 해당 연구 결과는 KAIST 바이오및뇌공학과 이동구 박사과정, 송국호 박사과정이 공동 제1 저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 2025년 5월 28일 온라인판에 게재됐다. ※논문명 : Reconstructive spectrometer using double-layer disordered metasurfaces ※DOI: 10.1126/sciadv.adv2376 이번 연구는 삼성미래기술육성사업과 과학기술정보통신부 한국연구재단이 주관하는 우수신진연구자사업, 선도연구센터지원사업(ERC), 바이오·의료기술개발사업 사업의 지원을 받아 수행됐다.
2025.06.13노화나 만성 질환은 장기간에 걸쳐 미세한 조직 변화가 서서히 축적되는 과정을 거치기 때문에, 장기 내 이러한 변화를 정량적으로 파악하고, 이를 질병 발병의 초기 신호와 연결하는 데에는 여전히 한계가 있다. 이에 우리 연구진이 조직 안에서 처음 문제가 생기는 국소적인 변화를 정확히 포착해, 질병을 더 빠르게 발견하고 예측하며, 맞춤형 치료 타깃을 설정하는 데 큰 도움이 될 플랫폼 기술을 개발하는 데 성공했다. 우리 대학 의과학대학원 박종은 교수, 한국생명공학연구원(KRIBB, 원장 권석윤) 노화융합연구단 김천아 박사 공동 연구팀이 노화 간 조직 내에서 국소적으로 발생하는 섬유화된 미세환경을 포착하고 이를 *단일세포 전사체 수준으로 정밀 분석*할 수 있는 ‘파이니-시퀀싱(FiNi-seq, Fibrotic Niche enrichment sequencing)’기술을 개발했다고 12일 밝혔다. *단일세포 전사체 분석: 세포 하나하나가 어떤 유전자를 얼마나 활발히 사용하고 있는지를 측정하는 방법으로 세포별 병든 세포의 정체와 기능을 파악할 수 있게 해줌 연구진은 노화된 간 조직에서 조직 분해 저항성이 높은 영역을 물리적 성질을 통해 선별하는 방법을 통해, 재생이 지연되고 섬유화가 축적되는 초기 노화 미세환경을 선택적으로 농축하는 방법을 개발했다. 이 과정에서 기존의 단일세포 분석 기술로는 포착하기 어려웠던 섬유화 관련 혈관내피세포와 면역과 상호작용을 하는 섬유아세포, PD-1 고발현 CD8 T세포 등 면역 탈진세포를 고해상도로 확인할 수 있었다. 특히 연구진은 ‘FiNi-seq’ 기술을 통해 노화 간 조직 내 섬유화 부위에서 관찰되는 특정 세포들이 분비 인자를 통해 주변 환경을 이차적으로 노화시키고, 이로 인해 노화된 환경이 확장된다는 것을 확인했다. 또한, 혈관내피세포가 조직 고유의 정체성을 상실하고 선천면역 반응을 유도해 면역세포 유입을 촉진하는 메커니즘도 규명했다. 공간 전사체 분석을 통해 면역세포와 상호작용을 하는 섬유아세포의 공간적 분포를 정량화하고, 이들이 조직 재생, 염증 반응의 유도, 만성 섬유화로의 이행에 관여함을 밝혔다. 연구팀은 전사체와 후성유전체 정보를 얻어내는 멀티-오믹스* 데이터를 통합 분석해 노화된 간 조직의 미세환경과 이의 공간적 이질성을 정밀하게 해석했으며, 이러한 변화들이 간 내 혈관 구조와 어떻게 연결되는지 확인했다. *멀티-오믹스(multi-omics): 유전자, 단백질, 대사물질, 세포 정보 등 생물체 내 다양한 생체 정보를 통합적으로 분석하는 방법 이번에 개발된 ‘FiNi-seq’ 기술은 섬유화를 유발하는 노화 과정을 포함해 대부분의 만성 간질환에서 병태생리적 신호를 고해상도로 포착하는 데 유용한 플랫폼으로 기대된다. 제1 저자인 의과학대학원 탁권용 박사는 서울성모병원 소화기내과의 간 전문의로, 의사과학자 양성 사업의 지원을 받아 우리 대학 의과학대학원에서 박사 학위를 수행하며 만성 간질환에서 가장 중요한 임상 예후 지표인 섬유화의 진행을 조기에 진단하고 치료할 수 있는 기반을 마련하기 위해 이번 연구를 설계했다. 공동 제 1 저자인 의과학대학원 박명선 박사과정생은 FiNi-seq 기술의 기술적 구현을, KRIBB 노화융합연구단의 김주연 박사과정생은 노화 조직의 이미징 분석을 담당하여 연구에 핵심적 역할을 수행했다. KRIBB 김천아 박사는 “이번 연구를 통해 노화 간 조직에서 관찰되는 섬유화된 미세환경의 세포 구성과 공간적 특성을 단일세포 수준에서 정밀하게 규명할 수 있었다”고 말했다. 의과학대학원 박종은 교수는 “노화 및 만성질환 초기 단계에서 발생하는 섬세한 변화를 조기에 포착할 수 있는 분석 기술로서, 향후 효과적인 치료 지점을 찾는데 큰 역할을 할 수 있을 것으로 기대된다. 또한, 다양한 간질환 모델뿐만 아니라 폐, 신장 등 다른 장기의 만성 질환 연구로 확장해서 진행할 예정이다”라고 밝혔다. 이 연구는 의과학대학원 탁권용 박사, KRIBB 박사과정 김주연 연구원, 우리 대학 박사과정 박명선 학생이 제1 공동저자로 국제 학술지 ‘네이처 에이징(Nature Aging)’ 2025년 5월 5일 자에 게재됐다. ※논문제목: Quasi-spatial single-cell transcriptome based on physical tissue properties defines early aging associated niche in liver ※DOI: https://doi.org/10.1038/s43587-025-00857-7 이번 연구는 한국연구재단, 한국보건산업진흥원(KHIDI), 한국생명공학연구원KRIBB, KIST, 포스코사이언스펠로우십, 융합형의사과학자 양성사업 등 국내 여러 기관의 지원을 받아 수행됐다.
2025.06.12