-
온도에 반응해 말랑·딱딱 변하는 전자잉크 나왔다
스마트폰 같은 딱딱한 전자기기는 안정적인 성능을 제공하지만 착용시 불편함을 주는 반면, 얇고 유연한 웨어러블 기기는 착용감은 뛰어나지만 부드러운 특성 때문에 정밀한 조작에 한계가 있다. 국내 연구진이 온도에 따라 딱딱함과 부드러움을 자유자재로 전환할 수 있는‘액체금속 전자잉크’를 개발해, 가변강성을 갖춘 전자기기의 새로운 패러다임을 열고 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 서울대 박성준 교수 연구팀, 우리 대학 신소재공학과 스티브 박 교수 연구팀과 공동연구를 통해, 상온에서 마이크로 스케일(머리카락보다 얇은 구조)의 미세 선폭 회로 인쇄가 가능하고 온도에 따라 딱딱함과 부드러움을 자유자재로 조절할 수 있는 액체금속 전자잉크를 개발했다고 4일 밝혔다.
연구팀이 개발한 전자잉크는 정밀한 인쇄가 가능한 물성과 우수한 전기전도성을 동시에 갖추고 있으며, 딱딱함과 부드러움을 자유자재로 조절할 수 있는 전자소자를 상온에서 정밀 제작할 수 있는 획기적인 기술이다.
이 전자잉크는 상용 인쇄회로 기판(PCB) 수준의 복잡한 고해상도 다층 회로 인쇄가 가능하며, 완성된 전자기기는 온도에 반응해 딱딱한 형태를 유연하게 변화시킬 수 있다.
연구팀은 기존 전자기기의 고정된 형태의 한계를 극복하기 위해 체온 근처(29.8 ℃)에서 녹는 액체금속 갈륨에 주목했다. 갈륨은 고체 상태에서는 매우 단단하지만 녹으면 부드러운 액체가 돼 큰 폭의 강성 변화가 가능하다. 하지만 기존 갈륨은 물방울처럼 뭉치려는 성질(높은 표면장력)과 액체 상태에서의 불안정성 때문에 정밀한 회로 제작이 어려웠고, 제조 과정에서 원치 않는 상변화가 일어나는 문제가 있었다.
이러한 갈륨의 한계를 극복하기 위해 산성도(pH) 제어 기반 액체금속 전자 잉크 프린팅 기술을 개발했다.
먼저, 마이크로 크기의 갈륨 입자를 디메틸 설폭사이드(Dimethyl Sulfoxide, 이하 DMSO)라는 중성 용매에 친수성 폴리우레탄 고분자와 함께 섞어 전자 잉크를 제작했다. 이때 DMSO 용매의 중성 상태 덕분에 갈륨 입자들이 고분자 매트릭스에 골고루 분산된 안정적인 고점성 잉크가 형성되며, 이를 통해 상온에서 고해상도 회로 인쇄가 가능해진다.
그리고 인쇄 후에는 가열 과정에서 DMSO 용매가 분해되면서 산성 물질을 생성하고, 이 산성 환경에서 갈륨 입자들 표면의 산화막이 제거돼 입자들이 물리적으로 연결되면서 전기가 통하고 강성을 조절할 수 있는 회로가 형성된다.
연구팀은 이러한 2단계 공정을 통해 상온에서는 안정적인 인쇄가 가능하면서도 완성 후에는 우수한 전기전도성과 가변강성 특성을 갖는 전자소자를 구현할 수 있었다.
개발된 전자잉크는 머리카락 굵기의 절반 (약 50μm)인 미세 선폭으로 정밀한 회로를 인쇄할 수 있으며, 우수한 전기전도도(2.27×10⁶ S/m)와 함께 1,465배나 되는 강성 조절 비율을 제공한다. 이는 플라스틱처럼 딱딱한 상태에서 고무처럼 말랑한 상태까지 자유자재로 변할 수 있음을 뜻한다.
또한 스크린 프린팅, 딥 코팅 등 기존 인쇄 방법들과 호환돼 고해상 대면적 회로 제작은 물론 복잡한 3차원 형태의 다양한 전자기기 제작을 가능하게 한다.
연구팀은 이 기술을 활용해 평상시에는 딱딱한 휴대용 전자기기로 사용하다가 몸에 착용하면 부드러운 웨어러블 헬스케어 기기로 변환되는 가변형 다목적 기기를 개발했다. 뿐만 아니라, 수술 시에는 딱딱한 상태로 정밀한 조작과 뇌 삽입이 가능하지만 뇌 조직 내에서는 부드럽게 변해 조직 내 염증반응을 최소화하는 뇌 탐침을 구현함으로써 이식용 소자로서의 활용 가능성도 입증했다.
정재웅 교수는 “전자 잉크 용매의 산성도 조절을 통해 갈륨 입자들을 전기·기계적 연결하는 독창적 기술로 액체금속 프린팅의 고질적인 문제를 해결하고 상온에서 초정밀 고해상 회로 제작을 가능하게 한 것이 이번 연구의 핵심”이라며 “하나의 기기가 상황에 따라 딱딱한 상태와 부드러운 상태로 자유자재로 변환될 수 있어 다목적 전자기기, 의료 기술, 로봇 분야 등에서 다양한 응용이 가능할 것”이라고 말했다.
전기및전자공학부 이시목 박사과정 학생과 부산대 이건희 교수가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 5월 30일 字에 게재됐다.
(논문명 : Phase-Change Metal Ink with pH-Controlled Chemical Sintering for Versatile and Scalable Fabrication of Variable Stiffness Electronics, DOI/10.1126/sciadv.adv4921)
한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 중견연구지원사업, 기초연구실지원사업, 보스턴-코리아 공동연구 프로젝트, BK21 FOUR 사업의 지원을 받아 수행됐다.
2025.06.04
조회수 512
-
‘라이보’ 캣처럼 민첩하게 벽도 달린다..산악·험지 수색도 거뜬
우리 대학이 개발한 사족보행 로봇 ‘라이보(Raibo)’가 이제 계단, 틈, 벽, 잔해 등 불연속적이고 복잡한 지형에서도 고속으로 이동할 수 있게 됐다. 수직 벽을 달리고, 1.3m 폭의 간격을 뛰어넘으며, 징검다리 위를 시속 약 14.4Km로 질주하고, 30°경사·계단·징검다리가 혼합된 지형에서도 빠르고 민첩하게 움직이는 성능을 입증했다. 머지않아 라이보는 재난 현장 탐색이나 산악 수색 등 실질적인 임무 수행에 본격적으로 투입될 것으로 기대된다.
우리 대학 기계공학과 황보제민 교수 연구팀이 벽, 계단, 징검다리 등 불연속적이고 복잡한 지형에서도 시속 14.4km(4m/s)의 고속 보행이 가능한 사족 보행 로봇 내비게이션 프레임워크를 개발했다고 3일 밝혔다.
연구팀은 복잡하고 불연속적인 지형에서 로봇이 빠르고 안전하게 목표 지점까지 도달할 수 있도록 하는 사족 보행 내비게이션 시스템을 개발했다.
이를 위해 문제를 두 단계로 분해해 접근했는데, 첫째는 발 디딤 위치(foothold)를 계획하는 플래너(planner), 둘째는 계획된 발 디딤 위치를 정확히 따라가는 트래커(tracker)를 개발하는 것이다.
먼저, 플래너 모듈은 신경망 기반 휴리스틱을 활용한 샘플링 기반 최적화 방식을 통해 물리적으로 가능한 발 디딤 위치(foothold)를 빠르게 탐색하고, 시뮬레이션 롤아웃을 통해 최적 경로를 검증한다.
기존 방식들이 발 디딤 위치 외에도 접촉 시점, 로봇 자세 등의 다양한 요소를 함께 고려한 반면, 본 연구에서는 발 디딤 위치만을 탐색 공간으로 설정함으로써 계산 복잡도를 크게 낮췄다. 또한 고양이의 보행 방식에서 착안하여, 뒷발이 앞발이 밟았던 곳을 디디는 구조를 도입해 계산 복잡도를 다시 한번 크게 낮출 수 있었다.
두 번째, 트래커 모듈은 계획된 위치에 정확히 발을 디딜 수 있도록 학습되며, 트래킹 학습은 적절한 난이도의 환경에서 경쟁적으로 이루어진 생성 모델을 통해 진행된다.
트래커는 로봇이 계획된 위치에 정확하게 발을 디딜 수 있도록 강화학습을 통해 학습되며, 이 과정에서 ‘맵 생성기(map generator)’라는 생성 모델이 목표 분포를 제공한다.
이 생성 모델과 트래커는 동시에 경쟁적으로 학습돼, 트래커가 점진적으로 어려운 난이도에 적응할 수 있도록 설계됐다. 이후 학습된 트래커의 특성과 성능을 반영할 수 있도록, 트래커가 실행 가능한 디딤 위치 계획을 생성하는 샘플링 기반 플래너를 설계했다.
이 계층적 구조는 기존 기법 대비 계획 속도와 안정도 모두에서 우수한 성능을 보였으며, 실험을 통해 다양한 장애물과 불연속 지형에서의 고속 보행 능력과 처음 보는 지형에 대해서도 범용적으로 적용 가능함을 입증하였다.
황보제민 교수는 "기존에 상당히 큰 계산량을 요구하던 불연속 지형에서의 고속 네비게이션 문제를 오직 발자국의 위치를 어떻게 선정하는가의 간단한 관점으로 접근하였고, 고양이의 발디딤에서 착안하여 앞발이 디딘 곳을 뒷발이 딛도록 해 계산량을 획기적으로 줄일 수 있었다”며“보행 로봇이 극복할 수 있는 불연속 지형의 범위를 획기적으로 넓히고, 이를 고속으로 주행할 수 있도록 하여, 로봇이 재난현장 탐색이나 산악 수색 등 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다”고 말했다.
이번 연구 성과는 국제 학술지 사이언스 로보틱스(Science Robotics) 2025년 5월호에 게재됐다.
(논문명 : High- speed control and navigation for quadrupedal robots on complex and discrete terrain, https://www.science.org/doi/10.1126/scirobotics.ads6192)
유튜브링크 : https://youtu.be/EZbM594T3c4?si=kfxLF2XnVUvYVIyk
2025.06.04
조회수 377
-
슈퍼박테리아 방패 ‘바이오필름’ 무력화 치료 플랫폼 개발
병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다.
우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다.
연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ), 항생제 내성(mecA)>을 동시에 억제하는 짧은 DNA 조각(oligonucleotide)을 설계하고, 이를 탑재해 균내로 효과적으로 전달할 수 있는 나노입자(BTN)를 고안했다.
여기에 더해, 미세방울(microbubble, 이하 MB)을 사용해 포도상구균이 형성한 바이오필름인 미생물막의 투과성을 높인다. 연구팀은 두 가지 기술을 병용해, 세균의 증식과 내성 획득을 원천적으로 차단하는 이중 타격 전략을 구현했다.
이 치료 시스템은 두 단계로 작동한다. 먼저, 미세방울(MB)이 포도상구균이 형성한 세균성 생체막내 압력 변화로 나노입자(BTN)의 침투를 가능하게 만든다. 이어서, BTN이 생체막의 틈을 타 세균 내부로 침투해 유전자 억제제를 정확하게 전달한다. 이를 통해 포도상구균의 유전자 조절을 일으켜 생체막 재형성, 세포 증식, 그리고 항생제 내성 발현이 동시에 차단된다.
돼지 피부 감염 생체막 모델과 포도상구균 감염 마우스 상처 모델에서 시행한 실험 결과, BTN‑MB 치료군은 생체막 두께가 크게 감소했으며, 세균 수와 염증 반응도 현저히 줄어드는 뛰어난 치료 효과를 확인할 수 있었다.
이러한 결과는 기존 항생제 단독 치료로는 달성하기 어려운 수준이며, 향후 다양한 내성균 감염 치료에도 적용할 수 있는 가능성을 보여준다.
연구를 주도한 정현정 교수는 “이번 연구는 기존 항생제로는 해결할 수 없는 슈퍼박테리아 감염에 대해 나노기술, 유전자 억제, 물리적 접근법을 융합해 새로운 치료 해법을 제시한 것”이라며, “향후 전신 적용 및 다양한 감염 질환으로의 확장을 목표로 연구를 지속할 것”이라고 설명했다.
해당 연구는 우리 대학 생명과학과 정주연 학생과 일리노이대 안유진 박사가 제1 저자로 참여했으며, 국제학술지‘어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)’에 5월 19일 자로 온라인 게재됐다.
※ 논문 제목: Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection
※ DOI: https://doi.org/10.1002/adfm.202508291
한편, 이번 연구는 한국연구재단과 보건복지부의 지원을 받아 수행됐다.
2025.05.29
조회수 656
-
세계 최초‘좌우회전 빛 구별 반도체’소재로 양자광학 혁신
기존 광센서가 측정할 수 없었던 빛의 방향성 정보를 정밀하게 구별할 수 있다면, 빛의 편광 정보를 활용하는 양자 반도체, 스핀 광소자, 라이다(LiDAR), 바이오 센서 등의 핵심 소재로 활용될 수 있다. 기존에는 복잡한 필터나 유기성 민감한 재료를 써야만 이 좌우회전 빛을 구분할 수 있었으나, KAIST 연구진이 복잡한 장치 없이 특정 방향의 원형편광(Circularly Polarized Light, CPL)에 선택적으로 잘 반응하는 편광 감지 센서를 개발하는데 성공했다.
우리 대학 신소재공학과 염지현 교수 연구팀이 셀레늄(Se) 나노결정의 원자수준 카이랄성 제어를 이용해, 자외선부터 단파장 적외선까지 감지가능한 광대역 원형편광(CPL) 검출 반도체 소재를 세계 최초로 개발했다.
이 기술은 원형편광(CPL)을 실온에서 고감도로 감지할 수 있는 필름형 소재로, 빛으로 암호화된 정보를 해독하거나 양자비트(qubit)를 제어하는 등 양자 컴퓨팅과 스핀트로닉스, 광센서 기술의 핵심 소재로 주목받고 있다.
카이랄성(Chirality)은 좌우 비대칭성을 의미하며, 분자 수준뿐 아니라 광학, 의약, 생명현상 전반에 걸쳐 매우 중요한 물리적 특성이다. 특히 빛의 스핀 각운동량을 탐지하는 데 중요한 원형편광(CPL)을 구별하는 기술이다.
기존에 CPL 센서가 습기나 자외선에 약하고 열화되기 쉬운 문제로 상용화에 큰 한계가 있다는 점을 염두에 두고, 염지현 교수 연구진은 자연적으로 비대칭 결정 구조(카이랄성)를 갖는 무기 소재인 셀레늄에 주목했다.
셀레늄은 고유한 카이랄성 구조를 가지고 있으며, 성능 안정성을 반영구적으로 늘릴 수 있다. 하지만, 자연적으로는 원자 구조가 오른쪽과 왼쪽 방향성이 섞여서 존재하며, 한 쪽 방향성으로 제어하는 것은 매우 어려워 현실적인 활용에 큰 어려움이 있었다.
연구팀은 셀레늄(Se)을 나노 크기 막대 형태의 ‘셀레늄 나노로드’로 만들면서, 그 격자 구조가 왼쪽 또는 오른쪽 방향의 비대칭성(카이랄성)을 갖도록 제어할 수 있는 ‘카이랄성 전이 기술’을 개발했다.
연구진은 제작한 셀레늄 나노필름 소자가 자외선(180 nm)부터 단파장 적외선(2500 nm)에 이르기까지 넓은 파장 영역에서 CPL을 감지할 수 있음을 확인했으며, 광응답 비대칭성 지수(gres)*가 최대 0.4에 달하는 즉, 추가적인 편광 필터 없이 편광 방향을 정밀하게 구분하는 우수한 성능을 기록했다.
*광응답 비대칭성 지수: 0는 좌우 빛을 전혀 구별못함이며, ±0.1은 미세한 구별 가능, ±0.4은 이상좌/우 원형편광을 매우 뚜렷하게 구별 가능하여 고성능 센서로 인정
또한, 13개월 이상 공기 중에서 성능 변화 없이 안정적으로 동작함을 실험적으로 확인하며 무기물 기반 광소자의 장기 안정성 측면에서도 매우 우수함을 입증했다.
기존에는 고가의 투가전자현미경(TEM) 장비를 통해 격자 카이랄성을 분석할 수 있었던 반면, 이번에 개발한 2차원 라만 광활성(2D ROA) 매핑 기법은 셀레늄 나노필름이 지닌 카이랄 구조(좌/우 비대칭성)가 필름 전체에 어떻게 분포되어 있는지를 지도처럼 시각화하고 정량 분석할 수 있는 새롭고 강력한 분석 기술이다.
염지현 교수는 “이번 연구는 반도체 광소재 분야에서 카이랄성 구현 및 분석의 새로운 방법론을 제시한 것”이라며 “빛의 원형편광 정보를 선택적으로 읽고 구분할 수 있는 만큼, 빛 기반의 양자 정보 처리나 저전력 반도체 기술 개발에도 응용될 수 있으며, 본 연구에 사용된 셀레늄 나노필름 합성 공정은 상온 환경에서 이루어지며, 유해 화학물질이나 고온 열처리가 불필요한 친환경 공정으로, 상온에서도 안전하게 실험이 가능하다” 라고 말했다.
이어 “양자광학, 보안광학, 생체 진단 및 이미지 센서 등 다양한 분야에 실제 응용 가능한 기반기술로 확장할 수 있을 것”이라고 말했다.
이번 연구는 부경대학교 나노융합공학전공 권준영 조교수(前 KAIST 박사후연구원)가 제1 저자로 참여했으며, KAIST 신소재공학과 김경민교수 팀과 공동연구로 진행되었다. 국제 학술지 네이처 커뮤니케이션(Nature Communication)에 5월 3일 자로 온라인 게재되었다.
※ 논문명: Enantioselective Se lattices for stable chiroptoelectronic processing media https://doi.org/10.1038/s41467-025-59091-9
이번 연구는 과학기술정보통신부 한국연구재단의 우수신진연구사업 등의 지원을 받아 수행되었다.
2025.05.28
조회수 881
-
엔비디아 쿠다 통합메모리 없이 세계 최고 그래프 연산 혁신
인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다.
우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다.
연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링 기법을 핵심 기술로 한다. 그래프를 GPU 처리에 최적화된 자체 개발 압축 포맷인 HGF로 변환해 SSD와 같은 저장장치에 저장 및 관리한다.
기존 표준 포맷인 CSR로 저장할 경우, 1조 간선 규모의 그래프 크기가 9테라바이트(TB)에 이르지만, HGF 포맷을 활용하면 이 크기를 4.6테라바이트(TB)로 절반 가까이 줄일 수 있다. 또한 GPU에서는 메모리 정렬 문제로 그간 사용되지 않았던 3바이트의 주소 체계를 최초로 활용, GPU 메모리 사용량을 약 25% 절감했다.
또한, 엔비디아(NVIDIA) 쿠다(CUDA)의 통합 메모리(Unified Memory)에 전혀 의존하지 않고, 메모리 부족으로 인한 연산 실패를 방지할 수 있도록 메인 메모리와 GPU 메모리를 통합적으로 관리하는 GTask 전용 메모리 관리 기술을 주요 핵심 기술로 포함하고 있다.
김민수 교수 연구팀은 삼각형 개수 세기*와 같은 고난도 그래프 연산을 통해 지플럭스 기술의 성능을 검증했다.
*삼각형 개수 세기: 그래프에서 서로 연결된 세 개의 정점이 이루는 삼각형 형태의 관계를 모두 찾고 개수를 세는 연산으로 데이터 분석 및 인공지능에서 널리 활용됨
약 700억 간선 규모의 그래프를 대상으로 한 실험에서, 기존의 최고 성능 기술은 고속 네트워크로 연결된 컴퓨터 25대를 이용해 약 2,000초가 걸리던 삼각형 개수 세기 연산을 지플럭스는 GPU가 장착된 단일 컴퓨터만으로 약 두배 빠른 1,184초 만에 처리하는 데 성공했다.
이는 단일 컴퓨터로 삼각형 개수 세기 연산을 성공적으로 처리한 현재까지 알려진 최대 규모의 그래프다.
김민수 교수는 “최근 그래프 RAG(검색증강생성), 지식 그래프, 그래프 벡터 색인 등 대규모 그래프에 대한 고속 연산 처리 기술의 중요성이 점점 커지고 있다”며, “지플럭스 기술이 이러한 문제를 효과적으로 해결할 것으로 기대한다”고 말했다.
이번 연구에는 전산학부 오세연, 윤희용 박사과정이 각각 제 1, 2 저자로, 김 교수가 창업한 그래프 딥테크 기업인 (주)그래파이 소속 한동형 연구원이 제3 저자로, 김 교수가 교신저자로 참여했고. 연구 결과는 IEEE 주최 국제데이터공학학술대회(ICDE, International Conference on Data Engineering)에서 지난 5월 22일에 발표됐다.
※ 논문제목: GFlux: A fast GPU-based out-of-memory multi-hop query processing framework for trillion-edge graphs
※ DOI: https://doi.ieeecomputersociety.org/10.1109/ICDE65448.2025.00075
한편, 이번 연구는 과기정통부 IITP SW스타랩과 한국연구재단 중견과제의 지원을 받아 수행됐다.
2025.05.27
조회수 858
-
암 조직 ‘3D·가상염색’ 혁신기술로 절개 없이 관찰 가능
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다.
물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다.
200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다.
이에 연구팀은‘홀로토모그래피(Holotomography, HT)’라는 첨단 광학 기술을 활용해 조직의 3차원 굴절률 정보를 측정하고, 여기에 인공지능 기반 딥러닝 알고리즘을 접목시켜 마치 가상의 염색(H&E)* 이미지 생성하는데 성공했다.
* H&E(Hematoxylin & Eosin): 병리 조직을 관찰할 때 가장 널리 사용되는 염색법으로, 세포의 핵은 헤마톡실린(Hematoxylin)으로 파란색, 세포질은 에오신(Eosin)으로 분홍색으로 염색된다.
연구팀은 이 기술이 생성한 영상이 실제 염색된 조직 영상과 매우 유사하다는 점을 정량적으로 입증했으며, 다양한 장기와 조직에서도 일관된 성능을 보여줌으로써 차세대 병리 분석 도구로서의 범용성과 신뢰성을 입증했다.
또한, 토모큐브사의 홀로토모그래피 장비를 활용해 한국과 미국의 병원 및 연구기관과 공동으로 기술 실현 가능성을 검증함으로써, 이 기술이 실제 병리 연구 현장에 본격적으로 도입될 수 있음을 보여주었다.
박용근 교수는 “이번 연구는 병리학의 분석 단위를 2차원에서 3차원으로 확장한 매우 의미 있는 성과”라며, “앞으로 미세 종양 환경 내에서 암 종양의 경계나 주변 변역 세포들의 공간 분포를 분석할 수 있는 등 다양한 생의학 연구와 임상 진단에 널리 활용될 수 있을 것”이라고 전했다.
이번 연구는 박주연 석박사통합과정 학생이 제1 저자로 참여했으며, 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications)에 5월 22일자로 온라인 게재되었다.
(논문명: Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining. https://doi.org/10.1038/s41467-025-59820-0)
본 연구는 한국연구재단 리더연구사업, 한국산업기술진흥원의 글로벌산업기술협력센터사업, 보건산업진흥원의 지원을 받았다.
2025.05.26
조회수 762
-
산업디자인학과, 인간-컴퓨터 분야 세계최고 학술대회 최우수·우수논문상 4편 수상
산업디자인학과가 인간-컴퓨터 상호작용(HCI) 분야 최고 권위의 국제학술대회인 ACM CHI 2024에서 최우수 논문상(Best Paper) 1편과 우수 논문상(Honorable Mention) 3편을 수상했다. 최우수 논문상은 전체 게재 논문 중 상위 1%, 우수 논문상은 상위 5%에 해당되는 논문에 수여되는 명예로운 성과로, 기술과 디자인 융합 연구의 우수성을 세계적으로 입증한 결과다.
올해 CHI(ACM Conference on Human Factors in Computing Systems) 2025에는 5,014편의 논문이 접수되어 1,249편이 채택되었다. KAIST 산업디자인학과는 이 중 15편의 논문을 게재하는 성과를 거뒀고 그 중 4편이 수상작으로 선정되었다. 특히 ‘인간과 AI 간 상호작용(Human-AI Interaction)’에 대한 관심이 높아진 가운데, 5,000명 이상의 연구자가 참석해 역대 최대 규모로 대회가 개최되었다.
최우수 논문상- AI기반 자폐 아동 소통 도구 ‘AAcessTalk’
홍화정 교수팀은 네이버, 도닥임 아동발달센터와의 공동 연구를 통해 AI 기반 도구 액세스톡(AACessTalk)을 개발했다. 이 시스템은 발화를 하지 않는 자폐 아동에게는 개인화된 어휘를, 부모에게는 문맥 기반 대화 가이드를 제공한다. 연구 결과, 아동은 자신의 의사를 보다 분명히 표현할 수 있었고, 부모는 기능적 언어 교육보다 본질적인 소통에 집중할 수 있게 되면서 양육 효능감이 높아지는 효과가 관찰되었다. 해당 연구를 주도한 최다솜 박사과정은 신경다양인을 포용하는 AI 기술을 꾸준히 탐구해 왔으며, 이번 논문은 네이버 인턴십에서 수행한 연구 결과를 바탕으로 출판한 것이다.
우수 논문상- 인간과 AI 상호작용 탐색
남택진 교수팀(주저자 조형준 박사)의 ‘ShamAIn’은 한국 무속 신앙에서 영감을 받은 AI 신당으로, 인간보다 더 뛰어난 초지능 존재로 기능하는 AI와 인간의 상호작용을 탐구했다. 다수의 사용자들은 처음엔 호기심에서 시작했지만, 점차 개인적인 고민을 털어놓으며 심리적 위안을 얻는 경험을 보고했다. AI가 단순한 정보 제공자를 넘어 감정적 지지와 권위적 판단까지 수행할 수 있는 존재로 인식될 수 있음을 보여주는 연구다.
임윤경 교수팀(주저자 박수빈 박사과정)은 걸음 수, 감정 기록 등 다양한 개인 데이터를 생성형 AI를 활용해 시각 이미지로 변환하는 프로토타입을 개발하여 21일간 사용자 경험을 탐색했다. 참가자들은 자신의 개인 데이터를 이미지 생성 모델 DALL-E 3로 만든 시각 자료로 다시 돌아보며 새로운 자기 인식을 경험했다. 이는 AI가 자기 성찰의 도구로 활용될 수 있음을 제시하는 연구다.
안드레아 비앙키 교수팀은 시드니대학과 협력하여 가상현실(VR) 환경에서의 '가상 팔' 제어 실험을 진행했다. 사용자들은 반복적이고 중요도가 낮은 작업은 가상의 팔에 맡기고, 중요한 작업은 직접 제어하는 방식을 선호했다. 본 연구는 가상 신체 제어가 필요한 로봇, 게임, 재활, 보조공학 디자인에 실질적 시사점을 제공한다.
이번 수상 논문들은 디자인이 기술을 사람 중심으로 연결하고, AI의 사회적·심리적 영향을 설계하는 역할로 확장될 수 있음을 실증적으로 보여주었다는 점에서 의의가 크다.
석현정 산업디자인학과 학과장은 “이번 수상은 기술 중심의 AI 연구를 인간 중심의 디자인 관점에서 새롭게 해석하고, 이를 실생활 문제 해결로 연결 시킨 우리 학과 연구진들의 역량을 세계적으로 인정받은 결과”라며, “디자인이 기술 혁신의 파트너로서 어떤 역할을 할 수 있는지를 보여준 좋은 사례”라고 전했다.
2025.05.19
조회수 1613
-
VR 정밀포인팅·안무 창작 기술, 세계 최고 CHI 학회 2관왕
가상공간에서는 정확하게 포인팅이 되지 않으면 원하는 대상을 정확히 선택하기 어렵고, 몰입이 깨지는 어색한 경험을 하게 된다. KAIST 연구진이 가상공간에서 생생하게 실제 체험하는 느낌을 주는 기술을 개발했으며 또한 안무가들의 안무 동작을 쉽게 만들고 창작을 돕도록 하는 기술도 개발했다.
우리 대학 문화기술대학원 윤상호 교수 연구팀이 미국 UCLA(University of California, Los Angeles)의 양장(YangZhang) 교수와 공동연구를 진행한 ‘티투아이레이(T2IRay)’ 기술과 가상현실에서 안무가들이 창작 작업을 보다 자유롭고 창의적으로 진행할 수 있도록 돕는 ‘코레오크래프트(ChoreoCraft)’ 기술을 개발했다. 이 기술들은 인간-컴퓨터 상호작용 분야 최우수 국제학술대회인(CHI) 2025*에서 상위 5%에 주어지는 우수 논문상(Honorable Mention)을 동시 2개 수상했다.
*인간-컴퓨터 상호작용 분야 최우수 국제학회(CHI): 4월 25일부터 5월 1일까지 열린 세계 컴퓨터 연합회(ACM) 주최 인간-컴퓨터 상호작용 학술대회(Conference on Human Factors in Computing Systems, CHI 2025)
티투아이레이(T2IRay)는 기존의 단편적인 엄지와 검지(Thumb to Index) 제스처를 확장하여, 가상공간 안의 물체를 자유롭고 정밀하게 조작이 가능하게 하는 새로운 입력 방식을 제안한다.
기존에는 손의 위치나 방향이 달라져도 입력이 끊기거나 정확도가 떨어지는 문제가 있었으나, 티투아이레이에서는 손의 위치나 방향과 관계없이 정밀한 포인팅이 가능하도록 하여 사용자가 훨씬 자연스럽고 끊김없이 조작할 수 있도록 했다.
특히, 손가락 관계성을 바탕으로 로컬 좌표계를 활용하여 손 위치 및 방향에 관계없이 연속적인 입력이 가능하도록 하였다. 엄지의 섬세한 움직임을 좌표계 안에서 매핑하여 정밀하게 인식하고, 고개를 움직이는 자연스러운 동작까지 입력에 반영하여 넓은 범위에서도 자유로운 조작이 가능하다.
윤상호 교수는 “티투아이레이는 손이 고정되지 않은 다양한 상황에서도 부드럽고 안정적인 조작을 가능하게 함으로써 증강·가상현실(AR/VR)에서도 사용자 경험을 획기적으로 향상시킬 수 있다”라고 설명했다.
KAIST 김진아 박사과정이 제 1저자인 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 우수신진연구지원사업과 정보통신기획평가원(IITP)에서 지원하는 대학ICT연구센터(ITRC) 육성지원사업의 지원을 받았다.
▴ 논문명 : T2IRay: Design of Thumb-to-Index based Indirect Pointing for Continuous and Robust AR/VR Input
▴ 논문 링크: https://doi.org/10.1145/3706598.3713442
▴ T2IRay: https://youtu.be/ElJlcJbkJPY
또한, 윤상호 교수 연구팀은 가상현실에서 안무가들이 창작 작업을 보다 자유롭고 창의적으로 진행할 수 있도록 돕는 ‘코레오크래프트(ChoreoCraft)' 기술을 개발했다.
전문 안무가 대상의 경험 조사를 통해 창작 과정 내 안무가들이 직면하는 동작을 일일이 기억해야 하거나 아이디어가 막히는 경우, 그리고 명확하지 않은 피드백으로 인한 어려움을 개선하고자 했다.
이 기술은 가상현실(VR) 공간에서 춤 동작을 모션 캡쳐 기반의 아바타와 상호작용을 통해 직접 동작을 저장하고 수정할 수 있도록 하여 기억 의존을 줄였으며 음악 및 이전 동작과의 자연스러운 연결을 고려하여 새로운 안무를 추천해 창작을 도왔다. 또한 균형감, 안정성, 활성도 등 운동학적 요소를 분석하여 수치 기반 안무 피드백을 제공함으로써 창작 과정의 객관성도 높였다.
윤상호 교수는 “코레오크래프트는 안무가들이 직면하는 주요 어려움을 해결하고 창의성과 효율성을 향상시킬 수 있는 도구로 실제 안무가를 대상으로 한 사용자 실험에서도 창의적 아이디어 발굴과 정량적 피드백 제공 측면에서 높은 만족도를 얻었다. ”라 설명하며, “앞으로도 공간 컴퓨팅을 넘어 피지컬 인공지능(Physical AI)과 인간-컴퓨터 상호작용(HCI) 기술을 융합해, 실세계와 가상세계에서 인간의 능력을 확장하는 인간 중심 인터랙션 연구를 이어갈 것”이라고 밝혔다.
정경은 박사과정과 한현영 석사과정 연구원이 공동 제1 저자인 해당 연구는 문화체육관광부에서 시행한 문화예술실감서비스개발사업인 실시간 실가상 융합 기반 공연예술 교육 플랫폼 기술개발의 지원 아래 한국전자통신연구원(ETRI) 및 ㈜원밀리언(대표 김혜랑)과 협업을 통해 진행됐다.
▴ 논문명 : ChoreoCraft: In-situ Crafting of Choreography in Virtual Reality through Creativity Support Tool
▴ 논문 링크: https://doi.org/10.1145/3706598.3714220
▴ Choreocraft: https://youtu.be/Ms1fwiSBjjw
2025.05.13
조회수 1166
-
음악 창작 돕는 작곡 AI 동료 ‘어뮤즈’ 공개
음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다.
KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다.
이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해 작곡을 지원해 주는 AI 기반 시스템이다.
예를 들어, 사용자가 ‘따뜻한 여름 해변의 기억’과 같은 문구나 이미지, 사운드 클립을 입력하면, 어뮤즈는 해당 영감에 어울리는 코드 진행을 자동으로 생성해 제안한다.
기존의 생성 AI와 달리, 어뮤즈는 사용자의 창작 흐름을 존중하고, AI의 제안을 유연하게 통합·수정할 수 있는 상호작용 방식을 통해 창의적 탐색을 자연스럽게 유도한다는 점에서 차별성을 갖는다.
어뮤즈 시스템의 핵심 기술은 대형 언어 모델의 이용해 사용자의 영감으로 프롬프트에 입력한 글자 따라 이에 어울리는 음악 코드를 생성하고, 실제 음악 데이터를 학습한 AI 모델이 부자연스럽거나 어색한 결과는 걸러내는(리젝션 샘플링) 과정을 거쳐 결합한 두 가지 방법을 자연스럽게 이어 재현하는 하이브리드 생성 방식이다.
연구팀은 실제 뮤지션들을 대상으로 한 사용자 연구를 수행하여, 어뮤즈가 단순한 음악 생성 AI가 아닌, 사람과 AI가 협업하는 창작 동반자(Co-Creative AI)로서의 가능성이 높다는 평가를 받았다.
KAIST 전기 및 전자공학부 박사과정 김예원, 이성주 교수, 카네기 멜런 대학의 크리스 도너휴(Chris Donahue) 교수가 참여한 해당 논문은 학계 및 산업계 모두의 창의적 AI 시스템 설계의 가능성을 보여주었다.
※ 논문명 : Amuse: Human-AI Collaborative Songwriting with Multimodal Inspirations DOI : https://doi.org/10.1145/3706598.3713818
※ 연구 데모 영상: https://youtu.be/udilkRSnftI?si=FNXccC9EjxHOCrm1
※ 연구 홈페이지: https://nmsl.kaist.ac.kr/projects/amuse/
이성주 교수는 “ 최근 생성형 AI 기술은 저작권이 있는 콘텐츠를 그대로 모방하여 창작자의 저작권을 침해하거나, 창작자의 의도와는 무관하게 일방향으로 결과물을 생성한다는 점에서 우려를 낳고 있다. 이에 연구팀은 이러한 흐름에 문제 의식을 가지고, 창작자가 실제로 필요로 하는 것이 무엇인지에 주목하며 창작자 중심의 AI 시스템 설계에 주안점을 두었다.”라고 말했다.
이어 ”어뮤즈는 창작자의 주도권을 유지한 채, 인공지능과의 협업 가능성을 탐색하는 시도로, 향후 음악 창작 도구와 생성형 AI 시스템의 개발에 있어 보다 창작자 친화적인 방향을 제시하는 출발점이 될 것으로 기대된다.“라고 설명했다.
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었다.(RS-2024-00337007)
2025.05.07
조회수 2246
-
"파킨슨병을 편집하다” 염증 RNA 편집 효소 세계 최초 발견
파킨슨병(PD)은 알파시누클린(α-synuclein) 단백질이 뇌세포 내에서 비정상적으로 응집되어 신경세포를 손상시키는 퇴행성 신경질환이다. KAIST 연구진은 파킨슨병의 핵심 병리 중 하나인 신경염증 조절에 있어 RNA 편집(RNA editing)이 중요한 역할을 한다는 사실을 세계 최초로 밝혀냈다.
우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 UCL 국립신경전문병원 연구소 및 프랜시스 크릭 연구소와의 공동 연구를 통해, 뇌를 보호하고자 염증 반응을 일으키는 교세포(astrocyte)에 대해 RNA 편집 효소인 에이다원(ADAR1)이 면역 반응을 조절하는 중요한 역할을 한다는 것을 밝혀내고 파킨슨병의 병리 진행에 핵심적인 역할을 한다는 사실을 입증했다.
최민이 교수 연구팀은 뇌 면역세포의 염증반응을 알아보고자 파킨슨 환자에게서 유래한 줄기세포를 이용해 뇌의 신경세포를 돕는 교세포와 신경세포로 구성된 세포 모델을 만들고, 파킨슨병의 원인이 된다고 알려진 알파시뉴클레인(α-synuclein) 응집체를 처리한 뒤, 뇌 면역세포의 염증 반응이 어떻게 되는지 분석했다.
그 결과, 알파시뉴클레인 응집체 초기 병리형태인 알파시뉴클레인 단량체(oligomer)가 교세포 내 세포가 위험을 감지하는 센서처럼 작동하는 통로(Toll-like receptor) 경로 및 바이러스나 병원균과 싸우는 면역 신호 네트워크인 인터페론 반응 경로를 활성화하였다. 이 과정에서 RNA 편집 효소인 에이다원이 발현하면서 기능과 구조 등 단백질 성질이 바뀌는 아이소폼으로 변형되는것을 확인했다.
특히, 바이러스 감염시 면역 반응을 조절하기 위해 기능을 발휘하던 에이다원이 수행하는 RNA의 편집 활동이 ‘A(아데노신)’를 ‘I(이노신)’으로 바꾸는, 일종의 유전자 명령 수정 작업인 ‘A-to-I RNA 편집’이 일어난다. 이는 RNA 편집 활동이 정상적인 상황이 아니라, 염증을 일으키는 유전자들에 비정상적으로 집중되어 있다는 걸 발견했다. 이 현상은 환자 유래 줄기세포 분화 신경세포에서뿐만 아니라 실제 파킨슨병 환자 뇌의 부검 조직에서도 동일하게 관찰되었다.
이는 RNA 편집의 이상 조절이 교세포의 만성 염증 반응을 유도하고, 결과적으로 신경세포 독성과 병리 진행으로 이어질 수 있음을 직접적으로 입증한 것이다.
이번 연구는 신경 면역 세포인 교세포 내 RNA 편집 조절이 신경염증 반응의 핵심 기전이라는 사실을 새롭게 밝혔다는 데 의의가 크다. 특히 에이다원이 파킨슨병 치료의 새로운 타깃 유전자로 작용할 수 있음을 제시했다는 점에서 주목된다.
또한, 환자 맞춤형 유도 줄기세포 기반의 정밀의학적 뇌 질환 모델을 통해 실제 환자의 병리 특성을 반영한 점도 주목된다.
최민이 교수는 “이번 연구는 단백질 응집으로 인한 염증 반응의 조절자가 RNA 편집이라는 새로운 층위에서 작동함을 입증한 것으로, 기존의 파킨슨병 치료 접근과는 전혀 다른 치료 전략을 제시할 수 있다”고 밝혔다. 이어 “RNA 편집 기술은 신경염증 치료제 개발의 중요한 전환점이 될 수 있을 것”이라고 강조했다.
이번 연구에는 최민이 교수가 제1 저자로 참여했으며 사이언스 어드밴스드(Science Advances)에 4월 11일 자로 게재되었다.
※ 논문 제목: Astrocytic RNA editing regulates the host immune response to alpha-synuclein, Science Advances Vol11,Issue15 DOI:10.1126/sciadv.adp8504
※ 주저자: Karishma D’Sa(UCL, 제1저자), Minee L. Choi(KAIST, 제1저자), Mina Ryten(UCL, 교신저자), Sonia Gandhi(크릭 연구소, 캠브리지 대학, 교신저자)
이번 연구는 한국연구재단의 뇌과학선도융합, 우수신진연구사업과 KAIST의 대교 인지 향상 프로그램의 지원을 받아 수행되었다.
2025.04.28
조회수 2864
-
기후 위기 대응, 농경지 12.8% 줄여 식량 위기 경고
산업화 이전 대비 지구 평균 온도 상승을 1.5도 이내로 제한하겠다는 파리협정의 1.5도 목표를 달성하기 위해서는 전 세계적인 협력과 강력한 기후변화 감축 목표 설정이 필수적이다. 하지만 국제 공동연구진이 1.5도 목표 달성을 위한 정책이 실제로는 전 세계 농경지 면적을 약 12.8% 줄여 식량 위기안보에 부정적인 영향을 줄 수 있다는 연구 결과를 발표했다.
우리 대학 녹색성장지속가능대학원 전해원 교수와 베이징 사범대 페이차오 가오 교수가 이끄는 공동 연구팀이 파리협정의 1.5도 목표 달성이 전 세계 농경지와 식량 안보에 미치는 영향을 분석한 연구결과를 2일 밝혔다.
연구팀은 1.5도 목표 달성을 위한 기후 정책이 전 세계 농경지에 미치는 영향을 상세히 분석했다. 5제곱킬로미터(㎢) 단위로 전 세계 토지 변화를 예측했고 정밀하게 분석하였다.
기존 연구들에서는 1.5도 시나리오에서 농경지가 오히려 늘어날 것으로 예측했으나, 연구팀은 기후 정책이 분야 간에 미치는 영향과 토지 이용 강도를 함께 고려하면 전 세계 농경지가 12.8%가량 줄어들 것으로 분석했다. 특히 남미는 24%나 감소해 가장 큰 타격을 받을 것으로 예상됐고, 전체 농경지 감소의 81%가 개발도상국에 몰릴 것으로 분석됐다.
더 큰 문제는 주요 식량 수출국의 수출 능력이 12.6% 줄어들어 식량 수입에 의존하는 국가들의 식량 안보에 영향을 미친다는 것이다. 식량 생산 대국인 미국, 브라질, 아르헨티나의 농산물 수출 능력이 각각 10%, 25%, 4% 감소할 것으로 예측됐다.
전해원 교수는 “전 세계적 탈탄소화 전략을 세울 때는 여러 분야의 지속가능성을 두루 고려해야 한다”며 “온실가스 감축에만 집중한 나머지 지구생태계의 지속가능성이라는 더 큰 맥락을 보지 못하면 의도치 않은 부작용이 생길 수 있다”고 설명했다.
이어 “특히 개발도상국은 농경지가 줄어들고 수입 의존도는 높아지는 이중고를 겪을 수 있어, 탄소중립을 이루면서도 식량 안보를 지키기 위한 국제 협력이 꼭 필요하다”고 강조했다.
이 연구 결과는 우리 대학 전해원 교수와 베이징 사범대 송창칭 교수가 공동 교신저자로 국제 학술지 ‘네이처 클라이밋 체인지(Nature Climate Change)'에 3월 24일자로 게재되었고 4월호 표지 논문으로 선정되었다. (논문명: Meeting the global 1.5-degree goal could result in large-scale heterogeneous loss in croplandsHeterogeneous pressure on croplands from land-based strategies to meet the 1.5 °C target, DOI. https://doi.org/10.1038/s41558-025-02294-1)
이번 연구는 카이스트와 중국 베이징사범대학교, 북경대학교, 미국 메릴랜드대학교 연구진들과 공동으로 수행됐다.
참고로, 본 연구팀은 2021년 사이언스(Science)지에 발표된 첫 연구를 통해 현재 감축안으로는 지구 온도 상승을 1.5도 아래로 유지할 확률이 11%에 그친다는 사실을 밝혔고 각국의 온실가스 감축목표를 이행하는 경우에도 2도 이상 기온이 오를 확률을 예측했다.
※ Ou et al. 2021. Can updated climate pledges limit warming well below 2 degrees C? Science, 374(6568)
이어 2022년 네이처 클라이밋 체인지(Nature Climate Change)에 발표된 두 번째 연구에서 연구팀은 1.5도 목표 달성을 위한 구체적인 방안으로 제시한 세 가지 핵심 전략은 첫째, 2030년까지 각국의 단기 감축목표를 상향하고, 둘째, 2030년 이후 탈탄소화 속도를 기존 연평균 2%에서 최대 8%까지 높이며, 셋째, 각국의 탄소중립 달성 시점을 최대 10년까지 앞당겨야 한다는 것이다.
특히 2030년 이후로 목표 상향을 미루면 1.5도 달성이 가능하더라도 수십 년간 지구 온도가 크게 오르는‘오버슈트’현상이 발생할 수 있다고 경고했다.
※ Iyer et al. 2022. Ratcheting of climate pledges needed to limit peak global warming. Nature Climate Change, 12(12).
2025.04.02
조회수 1916
-
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다.
다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다.
그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다.
연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다.
이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다.
신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform)
이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 2258