- Nano Letters지 발표, “태양광 발전에 활용할 수 있는 핵심 기술 개발 ”-
완전결정* 은(銀) 나노선을 이용해 모든 파장의 빛에 작동하는 광학 나노 안테나가 순수 국내 연구진에 의해 개발되었다. 이번 연구 결과는 태양광 발전 등에 핵심적으로 활용할 수 있는 효율 높은 안테나 개발에 새로운 가능성을 열었다는 평가를 받고 있다.
※ 완전결정(perfect crystal) : 원자배열이 전체 결정체에 완전히 조직적으로 된 결정으로 이상결정(ideal crystal)이라고도 부름. 실제 자연환경에서는 거의 존재하지 않는 상태임
우리 학교 김봉수 교수(52세), 서민교 교수 및 고려대 박규환 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구), 21세기 프론티어연구개발사업 및 선도연구센터지원사업 등의 지원으로 수행되었고, 나노과학 및 기술 분야의 권위 있는 학술지인 ‘Nano Letters’지에 4월 17일자로 게재되었다.
(논문명 : Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna)
특히 이번 연구결과는 강태준 박사(제1저자), 최원준 박사 및 윤일선 박사와 같은 30대 초반의 젊은 국내 토종 박사들이 주축이 되어 일궈낸 성과라는 점에서 의미가 있다.
김봉수 교수 연구팀은 한 가지 파장의 빛에서만 작동하는 기존의 광학 나노 안테나의 한계를 극복하는 모든 파장의 빛에서 반응하는 광학 나노 안테나 개발에 성공하였다.
광학 안테나는 휴대폰의 안테나가 전파를 수신하여 전기신호로 변환하고 반대로 전기신호를 전파로 변환하여 송신하는 것과 같이, 빛을 수신하여 전자기장으로 변환하고 그 반대의 역할도 수행할 수 있는 최근 주목 받고 있는 광학 소자이다.
일반 전파가 아닌 빛을 송․수신하기 위해서는 안테나의 크기를 머리카락의 10만분의 1미터(나노미터) 수준으로 매우 작게 제작해야 하기 때문에, 전 세계 수많은 연구팀들은 나노입자를 이용해 광학 안테나를 개발하고자 노력해왔다.
그러나 기존에 개발된 광학 안테나들은 파장의 범위가 매우 제한적이어서 한 가지 파장의 빛에서만 작동하기 때문에, 다양한 파장에서 송․수신기 역할을 수행할 만큼 효율적이 못했다.
김 교수팀은 지금까지 활용하던 나노입자가 아닌 가시광 전 영역에서 작동하는 은(銀)을 사용해 다양한 파장에서 공명할 수 있는 나노선*으로 광학 안테나를 제작하여 이 문제점을 해결하였고, 모든 파장의 빛에서 은 나노선 안테나가 잘 작동한다는 사실을 실험적․이론적으로 증명하였다.
※ 나노선 : 수십에서 수백 나노미터(10억분의 1미터)의 굵기를 갖는 반도체 물질로 이루어진 머리카락 형태의 나노 구조체
김 교수팀이 합성한 은 나노선 안테나는 완벽한 결정구조를 가지면서도 결함이 없어 표면이 매끈하기 때문에, 모든 파장의 빛을 어떠한 손실 없이 송신하고 동시에 수신하여 효율을 극대화할 수 있다.
모든 파장의 빛을 손실 없이 송․수신하기 위해서는 나노선 안테나의 표면에 아주 작은 결함도 없어야 한다. 연구팀은 우선 섭씨 800도의 고온에서 아무 결함도 없는 완전결정 은 나노선을 만드는데 처음으로 성공하였다.
특히 은 나노선 안테나에 백색광을 비춰주면 빛을 송신하여 안테나 표면에 집중된 전자기장으로 변환시키고, 이 전자기장을 다시 여러 가지 파장의 빛으로 수신하여 마치 무지개와 같은 화려한 색상을 나타낸다. (사진)
김봉수 교수는 “이번 연구성과인 은 나노선 안테나는 실제로 활용할 수 있는 광학 안테나 개발에 한 걸음 다가섰다는 의미이다. 특히 태양광 발전 및 극미세 나노센서 등에 핵심기술로 사용될 수 있어 향후 나노-광-바이오산업에 선도적인 위치를 차지할 수 있을 것으로 기대된다”고 연구의의를 밝혔다.
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다. 물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다. 200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다. 이에 연구팀은‘홀로토모그래피(Holotomograp
2025-05-26우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다. 우리 대학 전기및전자공학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다고 27일 밝혔다. 이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서
2025-03-27기존 광학 기술은 두꺼운 생체 조직을 관찰할 때, 조직 내부에서 발생하는 빛의 산란으로 인해 광학적 수차(aberration)가 생기고, 이로 인해 영상 품질이 저하되는 한계가 있었다. 우리 연구진이 디지털 수차 보정 기술을 개발하여 두꺼운 생체 조직의 3차원 영상을 정밀하게 관찰할 수 있는 기술을 개발했다. 우리 대학 물리학과 박용근 교수 연구팀이 별도의 염색 없이 두꺼운 생체 조직의 3차원 영상을 고해상도로 관찰할 수 있는 디지털 수차 보정 기술을 개발했다고 5일 밝혔다. 연구팀은 광학적 메모리 효과(optical memory effect)*를 활용해 두꺼운 생체 조직을 실시간으로 고해상도로 관찰하는 기술을 개발했다. 이 기술은 기존 적응형 광학(adaptive optics) 기술보다 더욱 강력한 보정 효과를 제공하여, 생체 조직 내부의 구조를 보다 선명하게 포착할 수 있다. ☞광학적 메모리 효과: 빛이 기울어질 때, 산란된 빛도 함께 기울어지는 현상으로, 생체 조
2025-03-05우리 대학 물리학과 이상민 교수가 제33대 한국광학회장으로 선출됐다. 그는 오는 3월 1일부터 1년간 학회를 대표하며, 이에 대한 공식발표는 2월 13일 이루어졌다. 한국광학회는 1989년 창립된 레이저 및 광학 분야를 대표하는 학술단체로, 10,000명 이상의 산·학·연 회원이 활동하고 있다. 학회는 9개의 전문분과를 중심으로 기초과학의 발전과 최첨단 융합기술 개발에 기여하며, 국내 광학 연구의 중추적인 역할을 수행하고 있다. 레이저 및 광학기술은 현대 과학기술의 근간을 이루는 핵심 분야로, 2018년 노벨물리학상(레이저 물리), 2023년 노벨물리학상(아토초 과학), 그리고 같은 해 노벨화학상(양자점)을 수상하였으며, 기초과학 연구와 최첨단의 융합기술에 기반이 되고 있다. 차세대 반도체의 핵심인 극자외선(EUV)부터 에너지, 국방, 우주, 디스플레이, 그리고 양자정보·양자기술에 이르기까지, 국가의 미래 경쟁력을 결정짓는 최첨단 분야
2025-02-20