-
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉
우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다.
연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다.
안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다.
심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다.
심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다.
많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다.
심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다.
문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다.
연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다.
탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다.
이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다.
이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다.
이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다.
이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도
그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 19670
-
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉
우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다.
연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다.
예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다.
심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다.
그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다.
연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다.
행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다.
기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다.
이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다.
연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다.
예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다.
이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시
그림2. 영상잡음제거 결과
그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 21286
-
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다.
이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다.
이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다.
탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다.
탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다.
고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다.
그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다.
김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다.
폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다.
또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다.
“김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다.
이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
그림2. 연구 개요 모식도
2018.04.26
조회수 24356
-
정연식 교수, 2차원 반도체 공중 부양시켜 고성능 소자 제작
우리 대학 신소재공학과 정연식 교수 연구팀이 차세대 2차원 반도체를 빈 공간이 90%가 넘는 나노크기 돔 구조체 위에 올려 고성능 전자소자를 구현하는 데 성공했다.
연구팀은 이 기술을 활용해 2차원 반도체의 전자이동 능력이 기존 기술에 비해 2배 이상, 빛 감지 성능은 10배 이상 향상시켰다.
박사과정 임순민 연구원이 제1 저자로 수행한 이번 연구는 미국화학회가 발간하는 국제학술지 ‘나노 레터스(Nano Letters)’ 온라인 판 4월 3일에 게재됐다.
2차원 반도체 소재는 기존 실리콘 반도체의 물리적인 성능 한계를 극복할 수 있는 대안으로 떠오르고 있다.
하지만 원자층 수준의 얇은 두께 때문에 주변 영향에 매우 민감하다는 특성이 있다. 특히 2차원 반도체가 올려진 기판으로부터의 불규칙한 영향에 의해 성능과 신뢰성이 확보되지 못하고 있다.
이러한 문제점을 해결하기 위해 해외 연구팀들이 기판의 영향을 원천적으로 차단할 수 있는 방법을 연구하고 있다. 그 중 2차원 반도체를 공중에 매달린 구조로 설계하는 기술이 보고된 바가 있지만 반도체 층 하단을 받쳐주는 구조물이 존재하지 않아 기계적 내구성이 크게 떨어지는 단점이 있다.
정 교수 연구팀은 2차원 반도체 하단에 산화규소 재질의 초미세 돔형 구조물을 촘촘히 형성하는 아이디어로 문제를 해결했다.
기판 위에 올라가 있는 돔형 구조물은 초미세 나노크기이기 때문에 빈 공간이 90%가 넘는다. 그러한 돔 형태의 구조물 위에 2차원 반도체를 올리면 마치 기판 위에 반도체가 공중 부양하는 것과 유사한 효과를 보이게 된다. 이를 통해 기계적으로 안정적이면서 접촉 면적 및 기판의 영향을 최소화할 수 있다.
이러한 둥근 돔 구조 형상 덕분에 2차원 반도체와 기판 사이의 접촉면적을 최소화할 수 있어 반도체의 물리적 성능이 대폭 향상된다.
일반적으로 초미세 돔형 구조물을 제작하기 위해서는 패턴을 일일이 새겨주는 고가의 장비가 필요하다. 그러나 정 교수 연구팀은 분자가 스스로 움직여 나노구조물을 형성하는 자기조립 현상을 이용해 저비용으로 미세한 돔 구조 배열을 구현하는 데 성공했다. 또한 기존 반도체 공정과도 높은 호환성을 보임을 확인했다.
정연식 교수는 "이번 연구가 다양한 2차원 반도체 소재 이외에도 금속성 2차원 소재인 그래핀의 특성 향상에 동일하게 적용될 수 있다“며 ”활용범위가 커 차세대 유연디스플레이의 구동 트랜지스터용 고속 채널 소재 그리고 광 검출기의 핵심 소재인 광 활성층으로 활용될 수 있다"고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 돔 구조체 이용한 2차원 반도체 제작 이미지
2018.04.24
조회수 17770
-
이상엽, 김현욱 교수, 약물 상호작용 예측기술 DeepDDI 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수 공동 연구팀이 약물-약물 및 약물-음식 간 상호작용을 정확하게 예측하기 위해 딥 러닝(deep learning)을 이용해 약물 상호작용 예측 방법론인 딥디디아이 (DeepDDI)를 개발했다.
김현욱 교수, 류재용 연구원이 공동 1저자로 참여한 이번 연구는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 4월 16일자 온라인판에 게재됐다.
기존의 약물 상호작용 예측 방법론은 약물-약물 간의 상호작용 가능성만을 예측할 뿐, 두 약물 간의 구체적인 약리작용에 대한 정보는 제공하지 못했다. 이러한 이유로 맞춤형 약물 처방, 식이요법 등 응용 연구에서 체계적인 근거를 제시하거나 가설을 세우는 데에 한계가 있었다.
연구팀은 딥 러닝(deep learning) 기술을 적용해 19만 2천 284개의 약물-약물 상호작용을 아우르는 86가지의 약물 상호작용을 92.4%의 정확도로 예측하는 시스템 딥디디아이 (DeepDDI)를 개발했다.
딥디디아이는 두 약물 A, B 간의 상호작용에 대한 예측 결과를 다음과 같이 사람이 읽을 수 있는 영문 문장으로 출력한다 : “The metabolism of Drug B can be decreased when combined with Drug A (약물 A를 약물 B와 함께 복용 시 약물 B의 약물 대사가 감소 될 수 있다)”
연구팀은 딥디디아이를 이용해 두 약물 복용 시 일어날 수 있는 유해반응의 원인, 보고된 인체 부작용을 최소화시킬 수 있는 대체 약물, 특정 약물의 약효를 떨어뜨릴 수 있는 음식 및 음식 성분, 지금껏 알려지지 않은 음식 성분의 활성 등을 예측했다.
이번 연구성과로 약물-약물 및 약물-음식 상호작용을 정확하게 예측할 수 있는 시스템을 활용하는 것이 가능해졌으며 이는 신약개발, 복합적 약의 처방, 투약시의 음식조절 등을 포함해 헬스케어, 정밀의료 산업 및 제약 산업에 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구결과는 4차 산업혁명 시대의 정밀의료를 선도할 수 있는 기반 기술을 개발한 것이다”며, “복합 투여되는 약물들의 부작용을 낮추고 환자 맞춤형 약물 처방과 식이요법 제안을 통한 효과적인 약물치료 전략을 수립할 수 있다. 특히 고령화 사회에서 건강한 삶을 유지하는데 필요한 약-음식 궁합에 대한 제안을 해 줄 수 있는 시스템으로 발전해 나갈 것이다”고 말했다.
이 연구성과는 과학기술정보통신부의 바이오리파이너리를 위한 시스템대사공학 연구사업, KAIST의 4차 산업혁명 인공지능 플래그십 이니셔티브 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 딥디디아이 (DeepDDI)의 모식도 및 예측된다양한 약물-음식성분의 상호작용들의 시각화
2018.04.18
조회수 20126
-
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉
우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다.
노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다.
PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다.
이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다.
따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다.
PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다.
연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다.
연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다.
이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다.
연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다.
김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다.
이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다.
□ 그림 설명
그림1. Advanced science 3월 25일자 3호 표지
그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 21350
-
조은애 교수, 사용량 90% 줄이고 수명 2배 늘린 백금촉매 개발
〈 조 은 애 교수 〉
우리 대학 신소재공학과 조은애 교수 연구팀이 백금 사용량을 90% 줄이면서 동시에 수명은 2배 향상시킨 연료전지 촉매를 개발했다.
임정훈 연구원이 1저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 4월호(4월 11일자)에 게재됐다.
연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 기존 발전 설비를 대체할 수 있다. 연료전지를 주원료로 이용하는 수소 전기차 한 대는 성인 70명이 호흡하는 공기로부터 미세먼지와 초미세먼지를 98% 이상 정화할 수 있는 달리는 공기청정기로 불린다.
하지만 이 연료전지에 전극촉매로 사용되는 백금의 비싼 가격은 상용화를 가로막는 큰 장벽이다. 또한 현재 개발된 탄소 담지 백금 나노촉매는 상용화 기준에 못 미치는 산소환원반응 활성과 내구성을 보여 한계로 남아있다.
연구팀은 기존 백금 기반 촉매들의 산소환원반응 활성 및 내구성을 증진하는 것을 목표했다. 우선 백금과 니켈 합금 촉매를 합성한 뒤 성능 증진을 위해 여러 금속 원소를 도입한 결과 갈륨이 가장 효과적임을 발견했다.
연구팀은 백금-니켈 합금 촉매를 팔면체 형태의 나노입자로 만들고 나노입자의 표면에 갈륨을 첨가해 기존 백금 촉매에 비해 성능을 12배 향상시켰다.
특히 기존 연료전지 촉매들이 대부분 실제 시스템에 적용하는 데는 실패한 반면 조 교수 연구팀은 개발한 촉매를 이용해 연료전지를 제작해 가격을 30% 줄이고 수명도 2배 이상 향상시켜 실제 적용이 가능함을 증명했다.
1저자인 임정훈 연구원은 “기존 합성 방법으로 제조 가능한 백금 니켈 합금 촉매 표면에 갈륨을 첨가해 가열만 하면 촉매가 합성되기 때문에 기존 공정에 쉽게 도입이 가능하고 대량 생산이 용이해 실용화 가능성이 높다.”고 말했다.
조은애 교수는 “연료전지의 가격저감과 내구성 향상을 동시에 달성한 연구 성과로 수소 전기차, 발전용 연료전지의 시장경쟁력 제고가 기대된다”고 말했다.
이번 연구는 에너지기술평가원, 한국연구재단 기후변화대응사업과 국방과학연구소의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 내구성 평가 후의 촉매 입자 형상 변화
2018.04.17
조회수 17754
-
박병국, 김갑진 교수, 고효율 스핀 신소재 개발
〈 박 병 국 교수, 김 갑 진 교수 〉
우리 대학 신소재공학과 박병국 교수와 물리학과 김갑진 교수 연구팀이 자성메모리(Magnetic Random Access Memory, MRAM) 구동의 핵심인 스핀전류를 효율적으로 생성하는 새로운 소재를 개발했다.
이번 연구는 ‘네이처 머티리얼즈(Nature Materials)’ 3월 19일자 온라인 판에 게재됐다.
이 연구는 고려대 이경진 교수, 미국국립표준연구소(NIST)의 Mark Stiles 박사 연구팀 등과 공동으로 수행됐다.
자성메모리는 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있고 집적도가 높으며 고속 동작이 가능해 차세대 메모리로 주목받고 있다.
자성메모리의 동작은 스핀전류를 자성소재에 주입해 발생하는 스핀토크로 이뤄지기 때문에 스핀전류의 생성 효율이 자성메모리의 소모 전력을 결정하는 핵심 기술이다.
이번 연구에서는 강자성-전이금속 이중층이라는 새로운 소재 구조에서 스핀전류를 효과적으로 생성할 수 있음을 이론 및 실험을 통해 규명했다. 특히 이 구조는 기존 기술과 달리 생성된 스핀전류의 스핀 방향을 임의로 제어할 수 있다.
이 소재를 차세대 메모리로 주목받는 스핀궤도토크 기반 자성메모리에 적용하면 스핀토크 효율이 높아지고 외부자기장 없이 동작이 가능해 스핀궤도토크 자성메모리의 실용화를 앞당길 수 있을 것으로 기대된다.
스핀궤도토크 자성메모리는 고속 동작 및 비휘발성 특성으로 S램(D램에 대응하는 반도체 기억소자로 전원만 공급하면 기억된 정보가 계속 소멸하지 않는 램) 대비 대기전력을 획기적으로 감소시켜 모바일, 웨어러블, 사물인터넷용 메모리로 활용 가능하다.
이번 연구성과는 과학기술정보통신부 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 강자성-전이금속 이중층에서 스핀전류 생성 개략도
2018.04.13
조회수 19135
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 25677
-
최경철 교수 연구팀, 웨어러블 광 치료 패치 개발
우리대학 전기및전자공학부 최경철 교수와 전용민 연구원이 서울대 분당병원 박경찬 교수/최혜령 연구원과 OLED로 웨어러블 광 치료 패치를 개발하는데 성공했다. 광 치료는 빛을 쬐어 인체의 생화학 반응을 촉진시키는 치료법으로, 병원 등에 설치된 LED 또는 레이저 기기를 통해 상처를 치유하는 데 널리 사용되고 있다.
기존 기기는 유연하지 못하고 균일하게 빛을 조사하기 어려우며 열이 발생하는 문제가 있어서, 치료효과를 높이고 싶어도 인체에 밀착할 수 없는 한계가 있었다.
최경철 교수 연구팀이 개발한 광 치료 패치는 가볍고 유연해 피부에 부착한 채 일상생활을 하면서 고효율 치료를 지속할 수 있다. 구성요소인 OLED, 배터리, 과열방지 장치(히트싱크), 패치가 모두 얇은 막의 형태로 디자인됐고, 두께가 1㎜ 미만, 무게가 1g 미만이다. 300시간 이상 장시간 작동되며, 반경 20㎜ 이내로 휘어진 상태에서도 구동될 수 있으므로 다양한 인체 부위에 부착할 수 있다.
42℃ 이하에서 구동돼 저온화상의 위험도 없으며, 국제표준화기구(ISO) 기준의 안전성도 검증됐을 뿐만 아니라 세포증식이 58% 향상되고 세포이동이 46% 향상돼 상처 부위가 효과적으로 아물게 되는 뛰어난 치유효과를 보였다.
연구를 주도한 전용민 박사과정 연구원은 "웨어러블 광 치료 패치의 뛰어난 치료 효과와 편리함으로 인해 앞으로는 병원에 방문하지 않고 약국에서 구매해서 쉽게 광 치료를 받을 수 있을 것"이라며 "광 출력을 조절하면 피부미용/피부암/치매치료/우울증 치료 등 응용 범위를 넓힐 수 있다"라고 말했다.
최경철 교수는 "디스플레이로 응용되는 OLED의 장점을 광 치료와 융합한 기술로서, 휴대용, 고효율의 웨어러블 광 치료 상용화 길을 열 수 있을 것"이라고 말했다. 이번 연구는 과학기술정보통신부/한국연구재단 기초연구사업(선도연구센터)의 지원으로 수행됐으며, 국제학술지 어드밴스드 머티리얼스 테크놀로지 8일 게재됐다.
□ 그림 설명
그림1. 피부에 부착하는 웨어러블 OLED 패치의 구동 사진
그림2. 피부에 부착하는 웨어러블 OLED 패치의 상처치유 효과
2018.03.19
조회수 16513
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 19677
-
최민기 교수, 산화 내성 비약적으로 높인 CO2 흡착제 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 산화 내성을 크게 높인 아민 기반의 이산화탄소 흡착제 개발에 성공했다.
이번 연구에서 개발한 이산화탄소 흡착제는 기존 아민 기반 흡착제들의 문제점인 산화를 통한 비활성화 문제를 해결함으로써 실용화가 가능한 정도로 안정성을 끌어 올렸다는 의의를 갖는다.
이번 연구 성과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 20일자 온라인 판에 게재됐다.
지구온난화의 주범인 이산화탄소의 포집을 위해 이산화탄소 흡착제 연구가 활발히 진행되고 있다. 그 중 재생에 필요한 에너지 소요가 적고 무해한 고체 흡착제에 대한 관심이 커지고 있는데 그 중 기공이 발달한 고체 내부에 고분자 형태의 아민을 도입한 종류의 흡착제들이 주목받고 있다.
그러나 기존의 아민 기반 고체 흡착제는 뛰어난 이산화탄소 흡착 성능에도 불구하고 반복적인 사용에 따른 화력발전소의 배기가스 내 산소로 인한 아민의 산화 분해 현상이 발생해 성능이 떨어지는 심각한 안정성 문제가 있다.
연구팀은 상용 고분자 아민에 존재하는 극소량의 철, 구리와 같은 금속 불순물들이 아민의 산화 분해를 가속하는 촉매로 작용하는 것을 발견했다.
연구팀은 이 불순물의 활성을 억제할 수 있는 킬레이트제(chelator)라 불리는 소량의 촉매 독을 주입해 산화 안정성을 비약적으로 높였다. 개발된 흡착제는 92% 이상의 대부분의 흡착성능을 유지했으며 이는 기존 흡착제에 비해 약 50배 이상 증진된 산화 안정성이다.
연구팀은 우수한 이산화탄소 흡, 탈착 특성 뿐 아니라 기존 흡착제들의 고질적 문제점이었던 산화 안정성까지 모두 확보했기 때문에 현재까지 개발된 다른 고체 흡착제들보다 실용화에 가깝다고 밝혔다.
1저자인 최우성 박사과정은 “이번 연구는 고체 이산화탄소 흡착제의 산화 분해 문제점을 획기적으로 개선하여 상용화 수준까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다.
최민기 교수는 “연구팀이 개발하는 이산화탄소 흡착제는 상용화 초기 단계에 진입했고 이미 흡착제를 구성하고 있는 각 요소 기술이 세계를 리드하고 있다”며 “연구 역사가 짧은 만큼 앞으로도 개선할 부분이 많지만 흡착제를 더 발전시켜 세계 최고의 이산화탄소 포집용 흡착제를 개발하겠다”고 말했다.
이번 연구는 과학기술정보통신부의 Korea CCS 2020 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.흡착제 합성 모식도
그림2. 연구에서 개발한 신규 흡착제와 기존 흡착제의 성능 비교
2018.03.07
조회수 17713