-
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다.
나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다.
이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다.
빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다.
일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다.
연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다.
종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다.
연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다.
이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다.
연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다.
조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다.
물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 종이 기판 위 광결정 레이저 모식도
그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 22444
-
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉
옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다.
연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다.
㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다.
플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다.
반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다.
일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다.
연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다.
연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다.
다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다.
연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다.
최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다.
김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진
그림2. 직물 위에 형성된 OLED 구조
그림3. 단면 SEM 사진
2016.11.22
조회수 22742
-
김희탁 교수, 스펀지 구조 응용해 결착력 강화된 수소연료전지 개발
〈 김 희 탁 교수 〉
우리 대학 생명화학공학과 김희탁 교수와 한국화학연구원(원장 이규호) 홍영택 박사 공동 연구팀이 스펀지의 구조를 이용해 계면 결착력을 획기적으로 강화시킨 수소연료전지를 개발했다.
이번 연구 성과는 재료과학분야 국제학술지인 ‘어드밴스트 머티리얼즈(Advanced Materials)’ 11월 10일자 온라인 판에 게재됐다.
수소연료전지는 공기 중 산소와 연료탱크 내 수소로 구동되는 발전장치로서 차세대 친환경 운송수단인 수소연료전지차의 핵심 기술이다.
그러나 수소연료전지는 내연기관에 대비해 가격이 비싸 보급이 어렵고, 고가의 불소계 멤브레인을 이용하기 때문에 가격을 낮추기에도 한계가 있었다.
가격을 낮추기 위해 저가의 탄화수소계 멤브레인이 제안됐지만 탄화수소계 멤브레인은 전극과의 계면 결착력이 낮아 전극과 멤브레인 간 계면이 탈리(분자, 이온 등에서 원자가 떨어지는 현상)돼 수명이 급감하는 문제가 있다.
연구팀은 문제 해결을 위해 탄화수소계 멤브레인 표면에는 스펀지 계면 구조를 도입하고, 전극 표면에는 고분자 층을 삽입해 물리적인 맞물림 계면을 구현했다. 이는 스펀지 계면구조와 전극 표면 고분자 층이 서로 3차원적으로 얽혀 고정돼 강한 계면 결착력이 발생하는 원리이다.
연구팀은 전극과 멤브레인 사이의 계면 결착력을 기존에 비해 37배 증가시켰고 탄화수소계 연료전지의 수명은 약 20배 연장하는 데 성공했다.
특히 스펀지 계면구조는 공정성이 높은 스프레이 코팅이나 딥 코팅 법을 이용해 제조가 가능해 산업적으로도 큰 의미를 가질 것으로 기대된다.
연구팀은 한국기초과학지원연구원의 김환욱 박사와 협력해 구조의 시각적 분석을 진행했고 이대길 교수 연구팀과는 수치 해석을 통해 계면결착 원리를 규명했다.
김희탁 교수는 “물리적 맞물림 구조를 통해 연료전지의 계면 탈리 문제를 해결할 수 있음을 증명했다”고 말했다.
홍영택 박사는 “이번 연구가 기존의 우수한 탄화수소계 멤브레인들을 연료전지에 쉽게 적용할 수 있는 계기가 돼 연료전지 가격을 낮추는 데 크게 기여할 것이다”고 말했다.
이번 연구는 한국화학연구원 주요사업과 한국연구재단 기후변화대응기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스펀지 계면구조의 개념도
그림2. 스펀지 계면구조가 적용된 탄화수소계 연료전지의 막-전극 접합체 장기구동 후 SEM 이미지
그림3. 스펀지 계면구조 제조 공정 및 공정 단계에 따른 탄화수소계 멤브레인
2016.11.21
조회수 20672
-
임성갑 교수, 문턱전압 조절가능한 고성능 고분자 절연막 개발
우리 대학 생명화학공학과 임성갑 교수 연구팀이 유기 박막 트랜지스터를 저전력으로 구동하고 성능을 최적화할 수 있는 새 고분자 절연막 소재를 개발했다.
향후 유기 전자 소자의 성능 최적화 및 다양한 미래형 전자기기의 핵심 기술로 활용될 것으로 기대된다.
박관용 박사과정 학생이 1저자로 참여한 이번 연구 결과는 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 9월 26일자 뒷표지 논문에 게재됐다.
사물인터넷 시대를 맞이하며 가볍고 유연한 유기전자 소자가 주목받고 있다. 유기전자 소자의 상용화를 위해 성능 향상 및 저전력 구동을 위한 노력이 계속되고 있다.
특히 전력 소모를 줄이기 위해선 매우 얇은 두께에서도 우수한 절연 특성을 갖는 소재 개발과 소자의 문턱전압을 낮추는 기술이 반드시 필요하다.
문턱전압은 전류가 흐르기 위한 최소한의 전압을 뜻한다. 기존 유기 박막 트랜지스터에서는 문턱전압 조절을 위해 절연막과 반도체 사이에 표면 처리를 하는 방식을 주로 이용했다.
그러나 이는 전하 이동도 등 소자의 다른 성능들이 감소되는 한계가 있었다. 따라서 소자의 성능 최적화를 위해서는 전하 이동도 및 문턱전압 등을 독립적으로 조절하는 기술이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor depositon : iCVD)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법이다.
이 기술은 균일도가 높고 불순물을 최소화할 수 있어 절연막 소재 개발에 적합하다. 또한 기체상에서 공정이 이뤄지기 때문에 액상 공정에서 합성이 불가능했던 다양한 공중합체(copolymer)를 합성할 수 있고 쉽게 비율을 조절할 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 유기 박막 트랜지스터의 문턱전압 조절이 가능한 새로운 공중합체 고분자 절연막을 합성했다. 이렇게 합성된 절연막은 극성이 다른 두 가지의 단량체를 사용하는데, 항공대학교 황완식 교수팀과 전기적 특성을 분석한 결과 특정 단량체의 비율에 따라 트랜지스터의 문턱전압이 조절됨을 확인했다.
또한 이 공중합체의 고분자 표면에 다른 고분자를 얇게 덧씌워도 여전히 문턱전압이 조절되는 것을 확인했다. 연구팀은 동일한 공정으로 공중합체 표면에 3나노미터 정도의 매우 얇은 두께의 무극성 고분자를 도입했다.
그 결과 무극성 고분자가 전하 이동도를 유지해주는 동시에 문턱전압만 독립적으로 조절할 수 있는 새로운 절연막 시스템을 개발했다.
이 절연막은 20나노미터 정도의 두께에서도 우수한 절연특성을 가져 3V(볼트)이하의 저전력 구동 중에도 성능 저하 없이 문턱전압만 선택적으로 조절할 수 있다.
임 교수는 “유기 박막 트랜지스터의 상대적으로 높은 전하 이동도를 유지하며 문턱전압만을 독립적으로 조절할 수 있는 새로운 기술이다”며 “저전력 구동이 가능한 유기 전자 소자의 상용화를 앞당길 수 있을 것으로 기대된다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 고분자 절연막 트랜지스터_게재지 표지논문
그림2. 본 연구에서 개발된 절연막 시스템이 적용된 유기 박막 트랜지스터 구조 및 전기적 특성
2016.10.19
조회수 11342
-
조용훈 교수, 피라미드 구조로 방향성과 집광 효율을 높인 고성능 반도체 양자 광원 개발
우리 대학 물리학과 조용훈 교수 연구팀이 반도체 피라미드 구조의 양자점이 피라미드 밑면으로 강한 빛을 방출함을 발견하고 이 빛을 높은 효율로 모을 수 있는 기술을 개발했다.
김세정, 공수현 박사가 공동 1저자로 참여한 이번 연구 결과는 나노분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 10월 12일자에 게재됐다.
반도체 양자점은 빛 알갱이를 하나씩 내뿜는 단일광자원(양자광원)으로 활용가능하다. 단일광자원은 미래의 양자컴퓨터 또는 양자암호기술 등을 구현하기 위한 필수 요소이다.
일반적인 양자점은 불규칙적인 위치에 형성되는 반면 3차원 피라미드 구조에 얇게 양자우물(Quantum well)을 성장시키면 정확히 피라미드 꼭짓점 위치에 양자점(Quantum dot)을 형성할 수 있다. 이 기술을 활용하면 위치가 제어된 단일광자원을 높은 수율로 얻을 수 있다.
하지만 양자점에서 나오는 빛은 빛 알갱이 개수가 적고 양자점이 굴절률 높은 반도체 물질에 갇혀 있기 때문에 일반적으로 구조 바깥으로 빠져나오기 어렵다. 반도체 단일광자원 소자가 상용화 단계로 나아가려면 빛의 집광 효율을 높여야만 한다.
연구팀은 일반적으로 가지고 있는 고정관념을 벗어나 문제를 해결했다. 피라미드 구조의 빛의 지향성(directionality)을 관찰했고 이를 이용했다. 그 동안 피라미드 양자점에서 나오는 빛은 피라미드의 위, 즉 꼭짓점 방향으로 나오는 신호만을 측정했다. 피라미드 밑면 방향으로는 성장 과정상 두꺼운 기판이 반드시 존재하기 때문이다.
하지만 연구팀은 시뮬레이션을 통해 양자점이 피라미드 위쪽보다 밑면 방향으로 더 많은 빛을 방출함을 확인했다.
또한 피라미드 밑면 방향으로 진행하는 빛은 가우시안 형태의 전기장 분포 형태를 갖고 있어, 광도파로 또는 광섬유의 단일 모드와 잘 일치한다. 이는 제품과 전선을 결합하듯이 광원과 광도파로 간의 결합 효율을 높일 수 있다.
이에 연구팀은 폴리머를 이용해 피라미드 구조체를 기판에서 떼어냈다. 피라미드의 밑면으로 나오는 빛이 두꺼운 반도체 기판을 거치지 않고 공기 중으로 직접 방출되도록 한 것이다.
연구팀이 떼어낸 피라미드는 쉽게 다른 광학 소자들과 직접 결합할 수 있어 피라미드 양자점의 응용분야가 확대될 수 있는 발판이 될 것으로 기대된다.
조 교수는 “이번 연구 내용은 양자 광원 뿐 아니라 LED와 같은 광원 소자에도 적용 가능해 활용도가 높을 것으로 기대된다.”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 폴리머로 떼어낸 피라미드 양자점의 모식도
그림2. 피라미드 양자점에서 방출된 빛의 상반구 및 하반구 먼장 (far-field) 방출 패턴(좌)와 폴리머로 떼어내기 전후의 나노 피라미드 구조체(후)
2016.10.18
조회수 20430
-
김상욱, 신종화 교수, 가시광선 굴절률 5 이상으로 높일 수 있는 메타소재 개발
우리 대학 신소재공학과 신종화 교수, 김상욱 교수 공동연구팀이 분자가 스스로 규칙적으로 배열하는 ‘분자조립제어’ 원리를 이용해 빛의 굴절률을 광범위하게 조절 할 수 있는 ‘메타소재’를 개발하는 데 성공했다고 밝혔다.
이 연구결과는 네이처 자매지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 9월 29일자 온라인 판에 게재됐다.
메타소재란 자연계에 존재하지 않는 신기한 특성을 가지는 소재를 의미하며 특히빛의 굴절률이 음수를 갖거나 5이상으로 매우 큰 새로운 개념의 신소재를 뜻한다. 굴절률은 물질내에서 빛의 진행속도, 산란, 흡수 등의 현상을 결정하는 중요인자로, 이를 조절하면 물질 내 빛의 거동을 원하는 형태로 설계할 수 있다. 예컨대, 투명망토 등과 같은 SF 영화에서 나오는 신기한 현상을 가능하게 하기 위해서는 가시광선의 굴절률을 폭넓게 조절할 수 있는 메타소재 개발이 필수적이라 할 수 있다.
공동연구진은 분자조립제어 원리를 통해 금속 나노입자간의 간격을 수 나노미터 수준으로 매우 정밀하게 조절하여 메타소재를 설계했고 이를 통해 가시광선에 대해 5이상의 높은 굴절률을 가질 수 있음을 증명했다. 더불어 연구진은 금속 나노입자간의 거리를 임의로 조절함으로 다양한 굴절률의 신소재를 형성할 수 있음을 확인했다.
신종화 교수는 “이 기술이 우리가 눈으로 볼 수 있는 가시광선 대에서 빛의 거동을 조절할 수 있기 때문에 태양전지나 LED와 같은 디스플레이장치의 성능을 상승시킬 뿐만 아니라, 지금까지 불가능했던 초고배율의 현미경이나 초고해상도 반도체장비 등 새로운 광학장치를 위한 아이디어를 제시할 수 있을 것으로 기대된다”고 말했다.
제 1저자로 신소재공학과 김주영 박사, 공동 저자로 김효욱 박사과정생, 김봉훈 박사, 장태용 박사과정생 등이 참여한 이번 연구는 한국연구재단의 나노조립제어 창의연구단 사업과 나노∙소재원천기술개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새로운 메타물질을 제조하는 공정에 대한 모식도
그림2. 수축공정을 실시하기 전 분자제어조립 기술을 통해 형성된 금속나노입자와 수축공정 후 매우 근접한 금속나노입자에 대한 주사 전자 현미경 이미지
그림3. 가시광선-적외석 영역대에서의 메타물질의 굴절률 측정 결과
2016.10.07
조회수 13638
-
박희성, 이희윤 교수, 암, 치매 유발하는 '변형 단백질' 생산기술 개발
우리 대학 화학과 박희성 교수, 이희윤 교수 공동 연구팀이 암과 치매 등 각종 질병을 유발 원인으로 알려진 단백질의 비정상적인변형을 구현할 수 있는 맞춤형 단백질 변형기술을 개발했다.
양애린 박사가 1저자로 참여한 이번 연구 결과는 ‘사이언스(Science)’ 9월 29일자 온라인 판에 게재됐고 '가장 중요한 논문(First Release)'에 선정됐다.(논문명 : A chemical biology route to site-specific authentic protein modifications)
신체의 기본 단위인 세포는 2만여 종의 유전자를 가지고 있다. 여기서 만들어지는 단백질의 종류는 100만 종 이상으로 추정된다. 이는 단백질이 만들어진 후 다양한 단백질 변형(post-translational modification) 현상이 일어나기 때문이다.
이러한 단백질 변형의 원인으로는 인산화, 당화, 아세틸화, 메틸화 등 200여 종이 알려져 있으며, 정상적으로 변형된 단백질들은 생체 내에서 세포 신호 전달, 성장 등 정상적인 신진대사 활동에 중요한 역할을 한다.
그러나 유전적, 환경적 요인으로 인해 비정상적 단백질 변형이 일어나면 세포의 대사활동과 신호전달이 손상돼 세포의 무한 분열을 초래하기도 한다. 각종 암은 물론 치매를 일으키는 퇴행성신경질환 및 당뇨를 포함한 각종 만성질환을 유발한다.
이전에는 이러한 비정상적인 단백질 변형을 구현한 맞춤형 변형 단백질 개발기술이 존재하지 않아 각종 질병의 원인 규명과 맞춤형 신약 개발 연구에 많은 어려움이 있었다.
연구팀은 2011년 암을 일으키는 직접적인 원인으로 알려진 비정상적인 단백질 번역 후 인산화를 구현하기 위한 맞춤형 인산화 변형 단백질 생산기술을 개발해 사이언스지에 논문을 발표했었다.
이번 연구는 지난 2011년의 선행연구 결과를 더욱 발전시켜 인산화 이외에 당화, 아세틸화 등과 같은 다른 200여종의 단백질 변형을 직접 구현해 원하는 변형 단백질을 합성할 수 있는 기술이다.
박 교수는 “이 기술을 활용하면 원하는 위치에서 원하는 종류의 맞춤형 변형 단백질 생산이 가능해져 암과 치매 등 단백질 변형으로 인해 발생하는 질병의 직접적인 원인을 밝힐 수 있다”며 “신약 및 치료제 개발 속도를 높이고 발생할 수 있는 부작용을 최소화할 수 있는 획기적인 기술이다”고 말했다.
이번 연구는 글로벌프론티어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 맞춤형 단백질 변형 기술 개발
그림2. 맞춤형 단백질 변형 기술의 활용
2016.10.03
조회수 11927
-
민범기 교수, 찌그러진 형태의 광학 공진기 내부에 속삭임의 회랑 모드 구현
〈 민 범 기 교수 〉
우리 대학 기계공학과 민범기 교수와 경북대 최무한 교수 공동 연구팀이 변환광학을 이용해 찌그러진 형태의 광학 공진기 내부에 ‘속삭임의 회랑 모드’를 구현했다.
기계공학과 김유신 박사과정이 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘네이처 포토닉스(Nature Photonics)’ 9월 27일자 온라인 판에 게재됐다.
속삭임의 회랑 모드는 광 공진기에서 알려진 모드 중 가장 높은 품위 값을 갖는 것으로 알려진 모드로서 구형 대칭성이 있는 공진기에서 경계면을 따라 전반사에 의해서 빛이 오랫동안 갇히면서 발생하는 현상이다.
속삭임의 회랑 모드는 품위값이 매우 높아 초소형 레이저, 초고감도 바이오센서 등과 같은 광전 소자 개발에 유용하게 사용된다.
그러나 공진기 밖으로 빠져 나오는 빛의 방향이 모든 방향으로 균일해 소자의 성능이 저하되는 한계가 있었다.
기존 연구에서는 구형의 공진기 모양을 다른 모양으로 변형시켜 빛을 한쪽 방향으로 빠져 나오게 하는 방법들이 제시되어 왔으나, 이 방법에서는 속삭임의 회랑 모드가 훼손돼 광학 모드의 높은 품위값이 필연적으로 저하되는 문제가 발생한다.
문제 해결을 위해 연구팀은 투명망토 연구 분야의 기초이론인 변환광학을 사용해 세계 최초로 속삭임의 회랑 모드를 훼손하지 않으면서 매우 높은 품위값을 유지하는 새로운 개념의 공진기 설계 원리를 제시한 것이다.
변환광학이 적용된 공진기에 형성되는 속삭임의 회랑 모드는 기존의 속삭임의 회랑 모드에서는 얻을 수 없었던 방출되는 빛의 방향성도 갖게 된다. 이는 초소형 단방향 레이저 설계에 있어서 핵심적인 원천기술이 된다.
이번 연구는 기존의 초소형 단방향 레이저 공진기 연구 분야에 변환광학을 도입해 새로운 연구방향을 제시해 주는 것이다. 최근 활발히 연구되는 메타물질 분야와 초소형 광-공진기 연구 분야를 융합하는 최초의 시도이다.
이번 연구에서는 빛의 진행 경로 조절에 국한되어 있던 변환광학을 공진기 내부에 발생하는 광학모드의 설계에도 적용할 수 있음을 보였다.
이는 최근 활발히 연구되고 있는 고집적 광전자(photonic) 회로의 광원, 플라즈모닉스 광도파로의 광원뿐만 아니라 미래의 광-정보처리 소자 설계의 원천기술이 된다. 특히 이러한 변환광학 공진기의 맞춤형(tailored) 모드들은 고효율 초소형 레이저 개발 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다.
이번 연구는 전자기파, 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 목적에 맞게 설계할 수 있는 일반적인 방법론을 제시했다. 광학, 재료공학, 나노과학 등의 응용분야뿐만 아니라 기초 물리학 분야에서도 의미있는 영향을 미칠 것으로 기대된다.
연구팀은 “이번 연구는 차세대 광-정보처리 소자 설계의 원천기술로서 고효율 초소형 레이저 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다”며 “더 나아가 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 설계하는 방법론으로 확장되면 재료공학, 나노과학, 기초 과학 분야에도 영향을 줄 수 있을 것이다.”고 말했다.
이번 연구는 교육과학기술부와 한국연구재단이 추진하는 중견연구자지원사업과 파동에너지 극한제어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 변환광학으로 구현한 속삭임의 회랑 모드 개념도
그림2. 균일한 굴절률을 갖는 원형 공진기 vs. 리마송 모양의 변환된 공진기
2016.09.27
조회수 13799
-
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다.
유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다.
진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다.
유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다.
이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다.
결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다.
연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다.
이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다.
연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다.
유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다.
또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다.
특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다.
또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다.
신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다.
신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진
그림2. 수학분야의 공간채움구조
2016.09.06
조회수 18126
-
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉
우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다.
AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다.
김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다.
김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다.
창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다.
김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다.
김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 14837
-
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉
우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다.
세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다.
그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다.
우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다.
또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다.
연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다.
그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다.
이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다.
또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다.
이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다.
본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다.
허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다.
□ 그림 설명
그림1. 세포내 PLEKHG3의 위치분석
그림2. 세포이동시 PLEKHG3의 세포내 위치추적
그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 12672
-
박용근, 정용 교수, 알츠하이머 정량화 가능한 홀로그래피영상 기술 개발
우리 대학 물리학과 박용근 교수와 바이오및뇌공학과 정용 교수(KI 헬스사이언스 연구소) 공동 연구팀이 홀로그래피 영상 기술을 이용해 알츠하이머 질환을 정량적으로 연구할 수 있는 광학 기술을 개발했다.
이무성 연구원과 이익성 박사가 공동 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 3일자 온라인 판에 게재됐다.
뇌의 구조는 뇌 기능 및 질병과 밀접한 관련을 갖고 있다. 특히 알츠하이머에 걸린 뇌는 회백질 및 해마에 아밀로이드 반점이나 신경 섬유 엉킴과 같은 비정상적 구조를 갖기 때문에 뇌 영상 촬영 기술 신경과학에서 꼭 필요한 기술이다.
뇌 관련 질병의 치료를 위해 자기공명영상(MRI)이나 양전자 단층 촬영(PET)과 같은 기존 영상 촬영 기술들을 많이 활용하고 있지만 0.1밀리미터 이하의 세밀한 구조는 관찰하기 힘들다는 한계를 갖는다.
이를 보완하기 위해 조직 병리학 기법을 이용해 뇌의 단면 구조를 관찰했지만, 뇌 조직이 투명하기 때문에 촬영을 위해선 염색 과정을 거쳐야 한다. 이 과정에서 왜곡이 발생할 수 있다.
또한 조직 병리로 얻은 정보는 정성적 정보가 대부분이기 때문에 질병 진단에 필요한 정량적, 객관적 기준을 제공하기 어려웠다.
문제 해결을 위해 연구팀은 먼저 홀로그래피 현미경 기술을 통해 뇌 구조의 정보를 정량적으로 분석했다.
연구팀의 홀로그래피 현미경은 빛의 간섭을 이용해 별도의 염색 과정 없이 조직의 굴절률 분포 수치 영상을 계산할 수 있다.
조직 샘플을 투과한 빛은 굴절률 분포에 따라 특정한 산란 과정을 겪는다. 위에서 얻은 굴절률 분포를 토대로 연구팀은 뇌 조직 내에서 빛이 산란되는 평균 거리와 산란광이 퍼지는 방향성을 정량화했다.
연구팀은 산란 평균 거리와 방향성 분포를 이용해 알츠하이머 인자를 가진 쥐의 뇌 조직에서 발생하는 구조 변화 및 정도를 정량적으로 수치화했다.
그 결과 알츠하이머 모델의 해마 및 회백질의 산란 평균 거리와 방향성이 정상 모델에 비해 더 낮아지는 것을 확인했다. 특히 해마 내 산란되는 평균 거리는 약 40%가 감소했다. 이는 해마와 회백질 구조가 알츠하이머병에 의해 손상되고 불균일해지기 때문으로 해석된다.
연구팀은 이번 연구가 알츠하이머 뿐 아니라 파킨슨 병 등 다른 질병 연구에도 광범위하게 활용될 수 있을 것이라고 내다봤다.
박 교수는 “최근 창업한 Tomocube(토모큐브) 사의 제품을 이용해 관련 연구자들이 보다 쉽게 새로운 방법을 적용시켜 다양한 조직 병리 연구에 활용할 수 있을 것으로 기대된다” 고 말했다.
□ 그림 설명
그림1. 홀로그래피 현미경 모식도
그림2. 기존 현미경과 홀로그래피 현미경 성능 비교
그림3. 정상 모델과 알츠하이머병 모델의 뇌 조직의 산란 계수, 이방성 분포
2016.08.17
조회수 12192