-
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다.
우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다.
대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다.
강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다.
공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다.
따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다.
또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다.
이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다.
우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly)
한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 9402
-
노화된 뇌막 속 쌓인 당이 장애 유발 최초 규명
평균연령 증가로 인해 심각한 뇌 질환을 동반하지 않은 일반적인 노화로 인한 뇌의 변화에 관한 연구 역시 필요한 추세다. 노화 연구와 관련하여 노화가 진행될수록 몸속에 ‘당’이 축적되고 이렇게 축적된 당은 노화-연관 염증, 혈관질환 등 다양한 질환의 원인 물질이 된다. 결국‘남아도는 당 분자’는 몸속 다양한 단백질에 붙어 단백질의 기능을 방해한다.
우리 대학 바이오및뇌공학과 김필남 교수, 정용 교수 공동연구팀이 뇌를 감싸고 있는 뇌막(혹은 뇌수막; brain meninges)이 노화에 따른 `당' 축적이 되면서 뇌 피질을 감싸고 있는 ‘최전선 방어벽'으로의 기능에 장애가 일어남을 확인했다고 15일 밝혔다.
김 교수 연구팀은 고령자의 뇌막에서 당 분자의 과도한 축적을 확인하고, 생쥐 모델에서도 나이에 따른 당의 축적이 이뤄짐을 확인하였다. 뇌막은 뇌를 감싸고 있는 얇은 막으로 뇌척수액과 피질의 경계에 존재하며 뇌를 보호하는 중요한 기능을 하고 있다. 이번 연구에서는 이러한 뇌막이 노화로 인해 생기는 기능이상이 뇌 속 ‘남아도는’ 당에 의해서 유도됨을 밝혔다. 특히, 노화에 의해서 뇌막이 얇아지고 끈적해지면서 뇌척수액과 뇌피질과의 물질교환이 감소하는 것에 대한 원리 규명에 새로운 패러다임을 제공하게 되었다.
이번 연구는 KAIST 바이오및뇌공학과 김효민 박사과정 학생과 김신흔 박사가 공동 제1 저자로 참여해 국제 학술지 `노화하는 세포(Aging Cell)'에 지난 2월 28일 자 온라인판으로 게재됐다. (논문명: Glycation mediated tissue level remodeling of brain meningeal membrane by aging)
뇌척수액과 직접 맞닿아 있는 뇌막은 주로 콜라겐 (collagen)이라는 세포외기질 (Extracellular Matrix, ECM) 단백질로 구성되어 있으며 이 단백질을 생산하는 세포인 섬유아세포 (fibroblast) 로 이루어져 있다. 당이 흡착된 콜라겐 단백질과 부착된 세포는 콜라겐의 생산기능이 떨어지는 반면, 콜라겐의 분해 효소의 발현이 높아지면서 뇌막은 지속적으로 얇아지고 붕괴된다.
지속적인 당 섭취로 인해서 초과된 당 분자가 뇌에 쌓이면서 신경세포의 변성과 뇌 질환 간의 연구는 지속적으로 진행되어 왔다. 하지만 뇌를 감싸고 있는 뇌막 자체에 초점을 두어 당 축적으로 인한 뇌막 변성 및 기능 장애를 확인한 것은 이번 연구에서 최초로 제시되었으며, 이는 뇌 질환 연구에서의 새로운 치료접근을 제시할 것을 기대할 수 있다.
제1 저자인 김효민 연구원은 “인간의 뇌에서 시작해서 생체모사 뇌막 모델과 동물모델을 활용한 융합적 접근으로 노화로 인한 뇌 장벽 변화에 대해 규명한 흥미로운 연구ˮ 라고 연구 결과를 소개했다.
김필남 교수 연구팀은 이러한 뇌막을 비롯한 인체 전반적으로 쌓이는 당을 제거하기 위한 연구개발을 진행하고 있다. 인체에서 단백질과 당이 만나서 형성되는 찌꺼기인 최종당화산물(Advanced glycation end product)는 대식세포에 의해서 일부 제거된다. 하지만, 콜라겐과 같은 세포외기질 단백질과 결합한 당화산물은 자연적으로는 제거되기 어렵다. 본 연구진은 KAIST-세라젬 연구센터를 통해서 ‘몸 속 당 찌꺼기’ 제거를 위한 헬스케어 의료기기를 개발하고 있다.
이번 연구는 한국연구재단 집단연구지원을 받아 수행됐다.
2023.03.15
조회수 6516
-
뇌 속 자명종 신경회로 발견
우리 대학 생명과학과 김대수 교수 연구팀이 한국과학기술연구원(KIST) 김정진 박사팀과 공동연구를 통해 동물이 잠을 자는 동안에도 소리에 반응해 각성하는 원리를 규명했다고 20일 밝혔다.
수면은 뇌의 활동을 정비하고 건강을 유지하는 매우 중요한 생리작용이다. 잠을 자는 동안 감각신경의 작용이 차단되므로 주변의 위험을 감지하는 능력이 감소하게 된다. 그러나 많은 동물은 잠자는 동안에도 포식자의 접근을 감지하고 반응한다. 과학자들은 동물이 깊은 잠과 낮은 잠을 번갈아 자면서 언제 있을지 모를 위험에 대비한다고 생각했다.
김대수 교수 연구팀은 깊은 잠을 자는 동안에도 동물이 소리에 반응하는 신경회로가 있다는 사실을 발견했다. 깨어 있을 때는 청각 시상핵 (Medial geniculate thalamus)이 소리에 반응하지만 깊은 잠 즉 비 램수면 (Non-REM) 동안에는 배내측 시상핵(Mediodorsal thalamus)이 소리에 반응해 뇌를 깨운다는 사실을 밝혔다.
연구 결과 쥐가 깊은 잠에 빠졌을 때 청각 시상핵 신경도 잠을 자고 있었지만 배내측 시상핵 신경은 깨어 있어 소리를 들려주자 곧바로 반응했다. 또한 배내측 시상핵을 억제하면 소리를 들려줘도 쥐가 잠에서 깨어나지 못했으며 배내측 시상핵을 자극하면 소리 없이도 쥐가 수초 이내에 잠에서 깨어나는 것을 관찰할 수 있었다.
이것은 수면상태와 각성상태가 서로 다른 신경회로를 통해 청각신호를 전달 할 수 있다는 최초의 연구로서 국제 학술지 ‘커런트 바이올로지 (Current Biology)’에 2월 7일자로 보고됐으며 (https://www.nature.com/articles/d41586-023-00354-0) 국제학술지 네이처에 하이라이트 되었다. ( https://www.nature.com/articles/d41586-023-00354-0)
김대수 교수는 “이번 연구를 통해 수면 질환 등 다양한 뇌 질환에서 보이는 각성 및 감각장애에 대한 이해를 증진하고 향후 감각을 조절할 수 있는 디지털 헬스케어 개발 등 다양한 분야로 활용이 가능하다”라고 설명했다.
한편 이번 연구는 한국연구재단 중견연구재단 과제로 지원됐다.
2023.02.20
조회수 7589
-
난치성 뇌전증 80%까지 유전자 진단 성공
우리 대학 의과학대학원 이정호 교수팀이 소아 난치성 뇌전증인 국소피질이형성증 환자 뇌 조직 연구를 통해 극미량의 뇌세포에 존재하는 돌연변이 검출하는 방법을 개발하고, 이를 통해 질병 발생의 메커니즘을 이해하고 치료의 초석을 마련했다고 15일 밝혔다.
이번 연구내용은 세계적 신경의학 학술지 `신경학 연보(Annals of Neurology)'에 지난 1월 26일 字 게재됐다.
뇌전증은 반복적인 발작을 특징으로 하는 신경질환이다. 뇌전증 유병률은약 0.5~1%로, 전세계적으로 5000만명이 넘는 환자가 있고, 국내에서는 30~40만명 정도로 치매, 뇌졸중 다음으로 많은 신경질환이다. 뇌전증 발작을 억제시키는 FDA(미국 식품의약국)에서 허가받은 항경련제가 20개가 넘는데도 불구하고, 발작이 조절되지 않아 일상생활에 지장을 초래하는 난치성 뇌전증 환자의 비율이 전체 뇌전증 환자의 30%에 이른다. 기존 항경련제는 뇌의 과도한 흥분을 억제해 발작 증상을 예방, 조절할 뿐, 질환의 원인, 질환 자체에는 영향을 주지는 못하고 있고, 뇌전증 발생 원인은 유전적 요인, 뇌염, 뇌종양 등 다양하지만 아직도 뇌전증 환자의 과반수 이상은 정확한 원인을 모르기 때문이다. 특히, 소아 난치성 뇌전증의 경우, 발작이 조절되지 않으면 뇌손상으로 이어져 지적장애, 발달장애로 인해 평생 장애를 갖고 살아가야 될 수 있으며 그들을 케어할 사회적 비용 또한 높아 치료제 개발이 절실하다.
국소피질이형성증은 태아의 뇌 발달과정 중에 생긴 이상으로 대뇌 피질이 국소적으로 비정상적인 구조를 띄며 뇌전증 발작을 동반하는 대표적인 소아 난치성 뇌전증 질환이다. 국소피질이형성증 난치성 뇌전증은 치료제가 없으며, 뇌절제술이 현재로서는 유일한 치료법이지만, 수술 후에도 재발하는 환자 비율이 30~40%로 높고, 수술이 불가능한 환자도 적지 않다.
연구팀은 기존에 전혀 원인을 알지 못했던 국소피질이형성증이 엠토르(이하 mTOR)* 경로 관련 유전자들에 뇌 세포 특이적으로 돌연변이가 생겨 발작이 발생된다는 사실을 2015년 네이쳐 메디슨 (Nature Medicine)에 세계 최초로 보고한 바 있다. 국제 뇌전증 협회 (ILAE)는 이를 반영하여 국소피질이형성증의 새로운 진단 기준을 2022년 개정하였다. 그러나 기존 뇌 돌연변이 분석 방법으로는 약 50%의 환자에게서만 유전적 진단이 가능하다는 한계를 갖고 있다.
* 엠토르(mTOR): 세포의 성장과 분열을 조절하는 신호전달 단백질
연구팀은 동물 실험 연구에서 전체 뇌세포의 1% 이하에 해당하는 극미량의 뇌세포만 해당 유전변이를 가져도 뇌 전체 발작 활성도를 변화시켜 발작을 초래한다는 것을 이미 확인한 바 있다. 이를 착안해 연구팀은 기존 뇌 조직 유전자 진단에서는 음성이 나온 환자 뇌조직에서 mTOR 경로의 발현 이상을 갖는 뇌 신경세포만 선택적으로 수집하는 방식으로 기존의 진단 방법의 한계를 극복하고자 했다.
기존방법으로 원인을 찾지 못한 국소피질이형성증 19명 환자 뇌 신경세포의 mTOR 활성화 신호를 표시하여 유세포 분석기를 통해 수집했고 유전체 염기서열 분석을 진행했다. (그림 1) 이 중 30%의 환자는 극미량의 돌연변이를 갖고 있었으며, 20%의 환자는 mTOR의 억제 유전자인 GATOR1 복합체의 생식세포 돌연변이를 갖고 있음을 밝혔다. 네덜란드 뇌 은행으로부터 공여받은 3명의 환자 뇌 조직에서 연구팀의 방법을 통해 3명 모두에서 유전적 진단이 가능했다.
이러한 진단적 접근은 기존 방식과 비교해 돌연변이를 약 34배까지 민감하게 검출하는 것과 동시에 전체 국소피질이형성증 환자의 유전적 진단율을 80%까지 끌어올릴 수 있었다. (그림 2) 이는 국소피질이형성증의 근본 원인을 규명하는 새로운 접근법을 제시하고, 난치성 뇌전증의 치료에 주요한 전기를 마련할 것으로 예상된다. 이번 연구 성과는 KAIST 교원 창업 기업인 소바젠㈜을 통해 국소피질이형성증 환자의 정확한 유전자 진단을 돕고 해당 환자에서 돌연변이 유전자를 정밀 타겟하는 혁신 RNA 치료제 개발에 이용될 예정이다.
KAIST 의과학대학원 졸업생으로 현재 서울 아산병원 소아청소년과에 근무하고 있는 의사과학자인 논문의 제1 저자 김자혜 박사는 "극미량의 체성돌연변이를 검출하는 새로운 접근을 통해 국소피질이형성증 발생의 정확한 원인을 이해하고, 이를 바탕으로 난치성 뇌전증 치료제 개발을 위한 작은 발판이 되길 바란다ˮ라고 말했다.
한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2023.02.15
조회수 7050
-
3D 프린팅 기반의 뇌 이식용 뉴럴 프로브 공정 기술 개발
우리 대학 전기 및 전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis) 연구팀과의 공동 연구를 통해 3D 프린팅 기반의 광유전학 뉴럴 프로브 공정 기술을 개발했다고 밝혔다.
광유전학은 빛을 사용해 목표로 하는 특정 신경세포를 선택적으로 정교하게 조절할 수 있는 기술로서 뇌 연구 및 뇌질환 치료분야에서 많은 각광을 받고 있다.
뇌에 광유전학을 적용하기 위해서는 빛을 목표 신경회로에 정확히 전달할 수 있는 장치가 요구된다. 따라서 서로 다른 광유전학 기반 뇌 연구 실험을 진행할 때마다 실험 대상 동물과 목표 신경회로의 위치에 최적화된 디자인을 갖는 뇌 이식용 뉴럴 프로브가 필요하다.
반도체 공정 기반의 광전자 뉴럴 프로브는 실험 목적에 맞게 길이와 형태를 설정하여 제작할 수 있어 광유전학 연구에서 널리 사용되고 있다. 하지만 반도체 공정은 많은 기반 시설과 전문성이 요구되어 신경과학자가 직접 접근하기 힘들다. 또한 공정에 많은 시간과 비용이 필요하여 새로운 디자인의 프로브를 빠르고 저렴하게 개발하기 어렵다.
연구팀은 뉴럴 프로브 공정에 3D 프린팅을 도입하여 이러한 문제를 극복했다. 개발된 공정은 단순하고 소요 시간이 짧으며, 비싼 반도체 공정 장비와 재료가 전혀 사용되지 않아 개당 약 1000원의 가격으로 생산이 가능하다 (참고: 상용 실리콘 프로브: 약 50000원 이상). 본 공정기술을 이용하면 3D 구조 설계 소프트웨어를 활용하여 누구나 손쉽게 뉴럴 프로브의 디자인을 수정하고 제작할 수 있어 다양한 동물의 목표 뇌신경회로에 최적화된 디바이스를 빠르게 구현할 수 있다.
3D 프린팅으로 제작된 프로브는 소형 무선 통신 모듈과 결합하여 무선 광유전학을 구현할 수 있도록 개발되었다. 무선 통신 모듈을 제어하는 스마트폰 앱도 개발하여 사용자의 편의성을 도모하였다.
연구팀은 본 기술이 신경과학 커뮤니티에서 누구나 활용할 수 있도록 개발 프로토콜을 제시했다. 프로토콜에는 광유전학 뉴럴 프로브와 무선 통신 모듈의 제작 과정뿐만 아니라 스마트폰 앱 사용법과 프로브 이식 수술 방법이 포함되어 있다. 3D 프린팅 기반의 본 제작기술은 광유전학 프로브 제작의 접근성, 용이성 및 활용성을 크게 높일 수 있어 다양한 뇌과학 및 신경과학 연구에 크게 기여할 수 있을 것으로 기대된다.
전기및전자공학부 이주현 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 프로토콜스 (Nature Protocols)' 1월 字 표지 논문으로 게재됐다. (논문명 : Customizable, wireless and implantable neural probe design and fabrication via 3D printing).
이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단의 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원 및 뇌&행동 연구재단의 지원을 받아 수행됐다.
2023.01.18
조회수 7675
-
수면 및 단기 기억력 조절을 위한 초소형 초음파 자극·뇌파 측정 시스템 개발
우리 대학 전기및전자공학부 이현주 교수, 한국뇌연구원 김정연 박사 공동연구팀이 소형 동물에서 초음파 뇌 자극과 뇌파 측정이 동시에 가능한 초소형 시스템을 개발했다고 9일 밝혔다. 수면 상태에 따라 실시간으로 초음파 뇌 자극이 가능한 해당 기술을 이용해, 연구팀은 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 시 전전두엽(PFC, Prefrontal cortex)을 실시간으로 자극해 수면 및 단기 기억력 조절이 가능함을 밝혔다.
☞ 미세 전자 기계 시스템(Micro Electro Mechanical Systems, MEMS): 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품과 시스템을 설계·제작하고 응용하는 기술을 의미한다.
☞ 초음파: 사람이 들을 수 있는 청각 영역에서 벗어난 고주파수 내역의 음파(>20 kHz).
☞ 뇌파: 저주파수 대역의 뇌 전기신호. 비침습적으로 두개골이나 두피에서 전반적인 뇌 활동을 뇌파로 측정할 수 있다. 영문으로 EEG라고 부른다.
☞ 전전두엽: 전두엽에서 인간 고유의 정신 기능을 담당하는 앞부분이다. 행동을 주시하고, 감독하고, 이끌고, 지시하고, 집중시키는 일을 하는 부위다.
이번 연구에서 개발된 초소형 초음파 자극 및 뇌파 측정 시스템은 기존의 마취가 필요한 시스템과는 달리 자유롭게 행동하는 쥐에 장기간 동시 자극과 측정을 할 수 있다. 초음파 자극 소자는 미세 전자 기계 시스템(이하 MEMS, Micro Electro Mechanical Systems)의 실리콘 공정을 활용했기 때문에 매우 정밀하고 초소형으로 제작할 수 있으며 대량생산이 가능하다. 초경량의 해당 시스템을 향후 다양한 뇌 질환 동물 모델에 적용한다면, 여러 뇌 질환에 대한 초음파 뇌 자극의 효과를 평가할 수 있을 것으로 기대된다.
기존 신경 자극 기술과는 달리 초음파는 수술 없이 뇌 심부의 국소적인 작은 영역까지도 자극할 수 있어, 저강도 집속 초음파 치료 기술이 주목받고 있다. 최근 저강도 집속 초음파 기술의 치료 효과와 유효성에 관한 연구가 활발히 진행되고 있다. 초음파를 뇌 또는 인체에 조사했더니, 알츠하이머병, 파킨슨병, 간질, 비만, 관절염 등이 호전되는 연구들이 다수 발표되고 있다.
신경 자극의 효능을 확인하는 방법으로는 생체 내 신호 측정과 행동 관찰을 들 수 있다. 그러나 이를 질병 모델이 많이 존재하는 소형 동물에서 구현하기는 쉽지 않다. 기존의 초음파 자극 기술은 부피가 커서 움직이는 생쥐에 사용이 불가능하거나 작동할 때 생기는 잡음 신호로 동시 전기 생리 신호 측정이 어렵다. 특히, 생쥐처럼 작은 동물에서 장기간으로 초음파 자극을 주면서 생체 내 반응을 실시간으로 측정하는 시스템이 없었다. 따라서 소형 동물에 인가되는 초음파 자극 실험은 통상적으로 짧게 자극 후 즉각적인 반응을 보거나 마취 상태에서 여러 차례 자극을 인가하고 장기적인 반응을 보는 연구들이 주를 이루고 있다.
이현주 교수팀은 그간 이런 문제를 해결하기 위해 MEMS 기반의 초소형 초음파 소자(CMUT, Capacitive Micromachined Ultrasound Transducer) 연구를 지속해서 수행해왔는데, 이번 연구에서 뇌파 신호 측정 및 실시간 수면 분석 기술을 접목해, 뇌의 현재 상태에 따라 자극을 주는 맞춤형, 폐루프 자극 시스템을 개발했다. 폐루프 자극 알고리즘은 6초 단위로 수면 단계를 실시간으로 분석해 비 급속 안구 운동(NREM, Non-rapid-eye Movement) 수면 단계일 때 초음파 자극을 전달한다. 이 시스템은 잡음 신호 없이 자극과 측정이 동시에 가능하다. NREM 상태 시 10시간 동안 수면 박탈 쥐의 전전두엽을 자극한 결과, 단기 공간 기억력이 보호되고 급속 안구 운동(REM, Rapid-eye Movement) 수면량이 증가함을 보였다.
연구팀은 현재 이 신기술을 고도화하기 위해 뇌 단일 영역의 매우 작은 부위를 자극할 수 있는 후속 시스템을 개발하고 있다. 국소 부위 자극을 통해 향후 정밀한 수면 단계 조절이 가능하게 된다면, 수술 없이 비침습적으로 수면 질환, 알츠하이머병, 파킨슨병 등의 뇌 질환 치료의 길이 열릴 것으로 연구팀은 기대하고 있다.
이현주 교수는 "초음파는 태아 영상화에도 활용될 만큼 안전한 인체 조사 기술 중 하나인데, 인체 내부 깊숙이까지 전달되며 펴지지 않고 집중 조사가 가능해 치료를 위한 비수술적 인체 조사 기술로 매우 매력적인 기술이다ˮ라고 말했다. "하지만, 전임상 자극 시스템의 부재로 현재 초음파 자극의 효능 평가 연구가 부족한 상황이며, 이번에 개발한 시스템을 많은 뇌과학 연구팀들이 활용해 초음파의 다양한 치료 효과를 밝혀낼 수 있기를 바란다ˮ라고 전했다.
전기및전자공학부 이현주 교수 연구팀의 조예현 박사과정, 그리고 한국뇌연구원 김정연 박사 연구팀이 주도하고 기초과학연구원 김성기 단장, 한국과학기술연구원 이병철 박사, 우리 대학 생명과학과 서성배 교수가 참여한 이번 연구 결과는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'誌 10월 19일 字에 게재됐으며 출판사 와일리(Wiley)의 리서치 헤드라인(Research Headline) 논문으로 선정돼 이현주 교수와 김정연 박사 인터뷰가 어드밴스드 사이언스 뉴스(Advanced Science News)에 11월 1일 실렸다. (논문명: General-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents)
한편, 이 연구는 과학기술정보통신부 한국연구재단 차세대지능형반도체 사업의 지원으로 수행됐다.
2022.11.09
조회수 9945
-
악성 뇌종양 탐지 대식세포 발견 및 기능 규명
뇌에서 발생하는 악성 종양인 교모세포종은 미국에서만 매년 1만 명 이상의 환자가 발생하지만 최근 주목받는 면역치료제도 유의미한 효과를 보지 못한, 치료가 매우 어려운 암 중 하나다. 국내 연구진은 이러한 교모세포종에 대한 면역반응을 증가시키는 *대식세포와 그 작용 기전을 밝혀 새로운 면역치료법의 가능성을 열었다.
☞ 대식세포: 세포 찌꺼기, 이물질, 미생물, 암세포 등을 집어삼켜서 분해하는 식세포작용을 하는 백혈구의 한 유형
우리 대학 의과학대학원 이흥규 교수 연구팀이 교모세포종 내에서 항암 면역반응에 중요한 대식세포를 찾고, 이 세포가 *세포독성 T 세포를 활성화하고 *포식작용으로 암세포를 제거할 수 있다는 것을 발견했다고 4일 밝혔다.
☞ 세포독성 T 세포: 바이러스에 감염된 체세포나 종양 세포를 파괴하는, 흉선에서 유래한 림프구
☞ 포식작용: 세균이나 죽은 세포 등 체내의 이물질을 섭취하여 제거하는 작용
교모세포종 환자는 진단 후 평균 생존 기간이 8개월에 불과하며 5년 이상 생존율은 6.8%로 매우 낮은 수준이다. 종양 치료를 위한 활발한 연구로 면역관문 치료제 등 다양한 치료법이 개발돼 지난 30년간 전체 암 환자의 생존율이 20% 가까이 증가했지만, 교모세포종 환자의 생존율 증가는 2%에 그쳤다.
종양 내 면역세포의 상당수를 차지하는 대식세포는 일반적으로 종양을 제거하는 대신 종양 환경에 적응해 종양세포의 성장 및 전이를 돕고 다른 면역세포들의 활성 및 작용을 억제해 항암 면역반응을 감소시킨다고 알려져 있다. 최근 흑색종 등에서 큰 효과를 나타내는 면역관문 치료제가 교모세포종 치료에서는 효과가 거의 없다는 것이 보고됐는데, 그 이유 중 하나로 손꼽히는 것이 이러한 면역 억제성 대식세포의 과다한 유입이다. 하지만 최근 보고된 연구 결과들은 종양 내 대식세포는 매우 다양한 표현형을 나타내는 여러 대식세포 아형으로 나눌 수 있으며, 이 세포들이 면역관문 치료제 등이 효과를 나타내는 데에 중요하다고 밝혔다.
이 교수 연구팀은 미국 국립암연구소(National Cancer Institute, NCI)와 국립인간유전체연구소(National Human Genome Research Institute, NHGRI)에서 운영하는 암 유전체 아틀라스(The Cancer Genome Atlas, TCGA)에 공개된 교모세포종 환자의 유전자 발현을 비교해 교모세포종 내에서 항암 면역반응을 증가시키는 대식세포의 마커로 CD169 유전자를 발굴하고, 마우스 교모세포종 모델을 사용해 CD169 단백질을 발현하는 대식세포가 없으면 항암 면역반응이 감소해 마우스의 생존이 감소하는 것을 밝혔다.
특히 연구팀은 CD169를 발현하는 대식세포가 세포독성 T 세포의 종양 내 유입에 중요한 CXCL10과 같은 *케모카인을 증가시켜 활성화된 T 세포의 종양 내 유입을 증가시킨다는 것을 밝혔다. 또한, CD169는 이 대식세포의 마커일 뿐 아니라 암세포에 대한 포식작용을 증가시키는 기능을 하며, CD169로 인해 포식작용이 증가한 대식세포는 암세포 특이적인 세포독성 T 세포의 활성을 직접 증가시키는 것을 밝혔다.
☞ 케모카인(chemokine): 백혈구 유주작용, 활성화 작용을 하는 단백질
이 교수는 "이번 연구 결과는 교모세포종에 대한 항암 면역반응에 중요한 대식세포의 마커를 발굴한 것뿐만 아니라, 이들 대식세포가 항암 면역반응을 증가시키는 기전을 확인해 면역관문 치료제의 효과를 높이는 복합치료제 개발에 실마리를 제공할 수 있을 것으로 기대한다ˮ고 밝혔다.
의과학대학원 연수연구원 김현진 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 10월 20일 字 온라인판에 게재됐다. (논문명: Blood monocyte-derived CD169⁺ macrophages contribute to antitumor immunity against glioblastoma)
한편 이번 연구는 삼성미래기술육성재단 및 한국연구재단의 지원을 받아 수행됐다.
2022.11.04
조회수 9513
-
상상만으로 원하는 방향으로 사용가능한 로봇 팔 뇌-기계 인터페이스 개발
우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다.
서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다.
바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에 출판됐다. (논문명 : Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface).
뇌-기계 인터페이스는 인간이 생각만으로 기계를 제어할 수 있는 기술로, 팔을 움직이는 데 장애가 있거나 절단된 환자가 로봇 팔을 제어해 일상에 필요한 팔 동작을 회복할 수 있는 보조기술로 크게 주목받고 있다.
로봇 팔 제어를 위한 뇌-기계 인터페이스를 구현하기 위해서는 인간이 팔을 움직일 때 뇌에서 발생하는 전기신호를 측정하고 기계학습 등 다양한 인공지능 분석기법으로 뇌 신호를 해독해 의도한 움직임을 뇌 신호로부터 예측할 수 있는 디코딩 기술이 필요하다.
그러나 상지 절단 등으로 운동장애를 겪는 환자는 팔을 실제로 움직이기 어려우므로, 상상만으로 로봇 팔의 방향을 지시할 수 있는 인터페이스가 절실히 요구된다. 뇌 신호 디코딩 기술은 팔의 실제 움직임이 아닌 상상 뇌 신호에서 어느 방향으로 사용자가 상상했는지 예측할 수 있어야 하는데, 상상 뇌 신호는 실제 움직임 뇌 신호보다 신호대잡음비(signal to noise ratio)가 현저히 낮아 팔의 정확한 방향을 예측하기 어려운 문제점이 오랫동안 난제였다. 이러한 문제점을 극복하고자 기존 연구들에서는 팔을 움직이기 위해 신호대잡음비가 더 높은 다른 신체 동작을 상상하는 방법을 시도했으나, 의도하고자 하는 팔 뻗기와 인지적 동작 간의 부자연스러운 괴리로 인해 사용자가 장기간 훈련해야 하는 불편함을 초래했다.
따라서 팔을 뻗는 상상을 할 때 어느 방향으로 뻗었는지 예측하는 디코딩 기술은 정확도가 떨어지고 환자가 사용법을 습득하기 어려운 문제점이 있다. 이 문제가 오랫동안 뇌-기계 인터페이스 분야에서 해결해야 할 난제였다.
연구팀은 문제 해결을 위해 사용자의 자연스러운 팔 동작 상상을 공간해상도가 우수한 대뇌 피질 신호(electrocorticogram)로 측정하고, 변분 베이지안 최소제곱(variational Bayesian least square) 기계학습 기법을 활용해 직접 측정이 어려운 팔 동작의 방향 정보를 계산할 수 있는 디코딩 기술을 처음으로 개발했다.
연구팀의 팔 동작 상상 신호 분석기술은 운동피질을 비롯한 특정 대뇌 영역에 국한되지 않아, 사용자마다 상이할 수 있는 상상 신호와 대뇌 영역 특성을 맞춤형으로 학습해 최적의 계산모델 파라미터 결괏값을 출력할 수 있다.
연구팀은 대뇌 피질 신호 디코딩을 통해 환자가 상상한 팔 뻗기 방향을 최대 80% 이상의 정확도로 예측할 수 있음을 확인했다.
나아가 계산모델을 분석함으로써 방향 상상에 중요한 대뇌의 시공간적 특성을 밝혔고, 상상하는 인지적 과정이 팔을 실제로 뻗는 과정에 근접할수록 방향 예측정확도가 상당히 더 높아질 수 있음을 연구팀은 확인했다.
연구팀은 지난 2월 인공지능과 유전자 알고리즘 기반 고 정확도 로봇 팔 제어 뇌-기계 인터페이스 선행 연구 결과를 세계적인 학술지 `어플라이드 소프트 컴퓨팅(Applied soft computing)'에 발표한 바 있다. 이번 후속 연구는 그에 기반해 계산 알고리즘 간소화, 로봇 팔 구동 테스트, 환자의 상상 전략 개선 등 실전에 근접한 사용환경을 조성해 실제로 로봇 팔을 구동하고 의도한 방향으로 로봇 팔이 이동하는지 테스트를 진행했고, 네 가지 방향에 대한 의도를 읽어 정확하게 목표물에 도달하는 시연에 성공했다.
연구팀이 개발한 팔 동작 방향 상상 뇌 신호 분석기술은 향후 사지마비 환자를 비롯한 운동장애를 겪는 환자를 대상으로 로봇 팔을 제어할 수 있는 뇌-기계 인터페이스 정확도 향상, 효율성 개선 등에 이바지할 수 있을 것으로 기대된다.
연구책임자 정재승 교수는 "장애인마다 상이한 뇌 신호를 맞춤형으로 분석해 장기간 훈련을 받지 않더라도 로봇 팔을 제어할 수 있는 기술은 혁신적인 결과이며, 이번 기술은 향후 의수를 대신할 로봇팔을 상용화하는 데에도 크게 기여할 것으로 기대된다ˮ고 말했다.
2022.10.24
조회수 9110
-
헌팅턴병 발병원인 제거를 위한 치료제 개발 방법 제시
우리 대학 생명과학과 송지준 교수 연구팀이 헌팅턴병(Huntington's disease)을 치료할 수 있는 새로운 개념의 방법을 제시했다고 2일 밝혔다.
헌팅턴병은 희귀 유전성 질환으로 근육 간 조정 능력 상실과 인지능력 저하, 정신적인 문제가 동반되는 신경계 퇴행성 질환이다. 이는 유전되는 퇴행성 뇌 질환이며 헌팅턴 단백질에 글루타민 아미노산이 여러 개가 연속적으로 확장되는 돌연변이로 인해 발병된다.
헌팅턴병은 약 1~3만 명 중 1명의 발병률을 가지고, 10여 년의 퇴행과정을 거쳐 죽음에 이르게 하는 병이다. 아미노산이 3,000개 이상 연결돼 만들어지는 거대 단백질인 헌팅틴(Huntingtin) 단백질은 질병을 일으키기는 하지만, 생체기능에 필수적인 단백질이고, 병을 일으키는 형태의 단백질만을 치료 표적으로 골라내는 것이 매우 중요하다.
송 교수 연구팀은 네델란드 프로큐알 테라퓨틱스(ProQR Therapeutics NV), 프랑스 그레노블 대학, 스웨덴 왕립 공대의 연구그룹이 참여한 국제 공동연구를 통해, 헌팅턴병을 유발하는 돌연변이 헌팅틴 단백질을 고유의 기능을 유지하면서 질병을 일으키지 않는 형태로 전환해 헌팅턴병을 치료하는 새로운 방법론을 제시했다. 이 결과는 헌팅턴병 치료제를 개발하는데 적용될 수 있을 것으로 기대된다.
우리 대학 생명과학과 김형주 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 저명 학술지 `임상연구저널(Journal of Clinical Investigation Insights)' 온라인판에 출판됐다.
(논문명 : A pathogenic proteolysis-resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function) https://elifesciences.org/articles/76823
연구팀은 알엔에이(RNA)의 일종인 안티센스올리고뉴클레오타이드(antisense oligonucleotide)를 이용해 생성이 유도된 헌팅틴 델타 12의 형태가, 헌팅턴병을 유발하는 주요 원인인 단백질 아미노산 말단부위로 인해 절단되지 않으면서도 헌팅틴 단백질 고유의 기능을 유지한다는 사실 밝혔다. 연구팀이 결과는 헌팅턴병 치료제 개발의 새로운 개념으로 이용될 수 있을 것으로 기대된다.
이번 연구를 주도한 생명과학과 송지준 교수는 "이번 연구는 한국을 포함한 4개국의 공동연구를 통해 이뤄진 것으로, 질병을 유발하는 헌팅틴 단백질을 정상상태로 유도하는 방법이 헌팅턴병 치료제 개발에 새로운 길을 열어줄 것으로 기대한다ˮ이라고 설명했다.
한편 이번 연구는 한국연구재단 글로벌연구실(Global Research Laboratory) 사업의 지원을 받아 수행됐다.
2022.09.02
조회수 7679
-
뇌 모방 스핀 소자 핵심기술 개발
우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다.
두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다.
본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다.
신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST 물리학과 이경진 교수가 공동저자로 참여한 본 논문은 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 30일 온라인 게재됐다. (논문명 : Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators)
기존의 스핀토크발진기 기반 뉴로모픽 소자는 학습 대상을 주파수 대역에 대응시켜 학습하는 소자로, 전류가 흐르지 않으면 학습 내용이 사라지는 휘발성과 200MHz 이내의 제한적인 학습 가능 대역폭을 가지고 있어 이에 대한 개선이 필요한 상황이다.
이번 연구에서 연구팀은 게이트 전압 인가가 소자의 수직자기이방성을 영구적으로 조절하고 이를 통해 자기공명주파수가 조절된다는 사실을 이용하여 기존 보고의 10배 이상인 2.1 GHz 이상의 광대역 조절 가능한 발진기를 실현하였다. 본 기술은 스핀-홀 나노 발진기 기반 뉴로모픽 소자 개발에 핵심 기술로 활용될 것이라 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.07.29
조회수 9063
-
대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견
우리 대학 의과학대학원 이정호 교수와 바이오및뇌공학과 최정균 교수, 생명과학과 김은준 교수(IBS 시냅스뇌질환연구단장), 분당서울대병원 유희정 교수, KISTI 공동 연구팀이 아시아 최초로 대규모 한국인 자폐증 가족 코호트를 모집하고 전장 유전체 분석을 실시해 자폐증 유발 유전변이가 단백질을 암호화하지 않는 유전체 영역인 비-부호화 영역에서 발생할 수 있다는 사실을 규명했고, 이를 통해 자폐증 원인의 새로운 이해와 치료 전기를 마련했다고 19일 밝혔다.
이번 연구내용은 세계적 정신의학 학술지 ‘분자 정신의학(Molecular Psychiatry)’에 7월 15일 자에 게재됐다.
자폐증은 사회적 의사소통 결핍이나 이상, 반복적이거나 틀에 박힌 행동 문제가 유아 시절 시작돼 거의 평생 지속되는 뇌 신경 발달장애로, 질환 발생의 근본적인 원인에 대한 이해가 매우 부족하며, 공식적으로 인정된 치료 약제가 전무하다. 자폐증 원인에 대한 이해의 필요성은 대중들의 높은 관심을 통해서도 가늠해볼 수 있는데, 예를 들어 최근 세간의 이목이 집중된 드라마 ‘이상한 변호사 우영우’의 주인공이 자폐증을 앓고 있다.
연구진은 자폐증 유발 유전변이가 비-부호화 유전체 영역에서 발생한다는 사실을 발견했으며, 이를 세계 최초로 한국인 자폐증 샘플로 제작한 인간 줄기세포를 이용해 증명했다. 자폐증의 근본 원인을 규명한 획기적인 연구 결과로서, 기존 연구의 한계를 뛰어넘어 그간 유전체 분야의 난공불락으로 여겨졌던 비-부호화 영역에 초점을 맞춘 혁신적인 발상으로 자폐증 치료의 새로운 전기가 마련될 것으로 예상된다.
연구진은 IBS와 한국연구재단, 국가바이오빅데이터 사업단의 지원을 통해 2011년부터 현재 3,708명에 달하는 자폐 환자와 그 가족들로 구성된 대규모 한국인 코호트를 구축하고 유전체 분석을 진행하고 있으며, 이번 연구 결과는 813명의 전장 유전체 염기서열 분석을 바탕으로 이뤄졌다. (그림 1)
유전체 데이터의 98% 이상을 차지하고 있으나 그간 자폐증 유전체 연구에서 조명받지 못했던 비-부호화 영역을 집중적으로 규명하고자, 연구진은 3차원 공간상의 염색질 상호작용(three-dimensional chromatin interaction)이라는 새로운 분석 방식을 사용했으며 (그림 2), 비-부호화 영역에서 발생한 유전변이가 멀리 떨어져 있는 자폐 유전자의 기능에 심각한 이상을 초래할 수 있음을 증명했다. (그림 3)
특히, 본 코호트의 한국인 자폐증 가족으로부터 직접 인간 줄기세포를 제작해 태아기 신경세포를 재현했으며, 이러한 생애 초기 신경 발달단계에서 비-부호화 영역의 유전변이에 의해 최대 500,000 base-pair(유전체 거리 단위) 이상 떨어져 있는 유전자의 발현이 비정상적으로 낮아지거나 높아질 수 있음을 세계 최초로 증명했다 (그림 4)
이번 연구 성과는 자폐증 유발 유전변이가 단백질을 부호화하지 않는 비-부호화 영역에서 발생해, 멀리 떨어져 있는 유전자의 기능에 영향을 미침으로써 신경 발달단계 초기부터 질병 발병에 기여한다는 획기적인 자폐증 원인에 대한 발견이다. 연구팀은 그간 단백질을 부호화하는 영역에만 쏠려 있던 정신질환 연구 풍토 속에서, 비-부호화 영역을 규명하는 방향으로 전환해야 자폐증 치료의 비밀을 풀 수 있다는 새로운 접근법을 제시했다.
IBS 시냅스뇌질환연구단(김은준 교수팀 프로젝트 제안 및 개시), 서울의대 및 분당서울대병원(유희정교수팀 코호트 구축 및 임상 평가), KISTI(대용량 컴퓨팅 리소스 및 유전체 데이터 분석 파이프라인 제공), KAIST (이정호 교수팀, 최정균 교수팀 비-부호화 영역 유전변이 분석) 공동 연구팀이 통합된 유전체-임상 데이터에 대해 3차원 공간상의 염색질 상호작용 분석을 통해 비-부호화 영역에서 발생한 유전변이가 자폐증 발병에 기여함을 규명했다.
이는 순수 국내의 임상가와 기초과학자, 생물정보학 전문가의 융합연구로 이루어낸 성과이며, 아시아 최초의 대규모 전장-유전체 데이터 기반 코호트 구축과 유전체 분석 모델의 기틀을 마련함으로써 대한민국 유전체 연구의 선도적인 역할을 한 것이다. 자폐 유전체 연구는 지난 10년간 북미와 유럽을 위주로 대규모로 진행됐으나, 한국을 비롯한 아시아에서는 상대적으로 연구가 덜 진행됐다.
논문의 공동 제1 저자인 KAIST 의과학대학원 졸업생 김일빈 박사는 “신경발달장애 중 자폐증은 특히 치료가 어려운 것으로 알려져 있는데, 발병 원인 중 하나로 지목되는 유전체 영역의 이상을 한국인 고유의 데이터를 사용해 순수 국내 연구진들의 힘으로 발견해냈다는 데 큰 의미가 있으며, 이 연구 성과가 언젠가는 이루어질 자폐증 치료제 개발을 위한 작은 발판이 되길 바란다”라고 말했다. 분당서울대병원의 유희정 교수도 “우리나라 연구진의 힘을 모아 자폐증의 비밀을 풀기 위한 첫걸음을 내딛었다. 연구에 참여해 준 당사자와 가족들의 헌신으로 이룬 일이라고 생각한다. 하지만 우리가 자폐증의 발병 기전을 완전히 이해하고 나아가 치료제를 개발하기 위해서는 아직 연구해야 할 것이 많다. 유전체 연구에 대한 국가 차원의 지원이 절실하며, 자폐증을 가진 분들과 가족들의 관심도 꼭 필요하다”는 점을 강조했다.
한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2022.07.19
조회수 10721
-
기억 저장 세포의 뇌 지도 제작기법 최초 개발
우리 대학 연구진이 기억을 저장하는 다양한 뇌 부위 세포들의 분포를 지도로 제작하는 기법의 개발에 최초로 성공했다.
바이오및뇌공학과 박영균 교수 연구팀이 메사추세츠 공과대학(MIT) 정광훈 교수 및 스스무 도네가와(Susumu Tonegawa) 교수 공동연구팀과 함께 단일 기억을 저장하는 세포들을 생쥐의 뇌 전체에서 매핑하는 기법을 개발하고, 이를 통해 공간 공포 기억을 저장하는 새로운 뇌 부위 세포들을 발견했다고 2일 밝혔다.
기억은 주로 몇몇 뇌 부위에 국한해 연구돼왔다. 예를 들어 공포 기억은 편도체, 공간 기억은 해마의 세포들에 저장된다고 생각돼왔으며, 해당 뇌 부위들이 주로 연구됐다. 하지만 단일 기억이 다양한 뇌 부위에 나누어 저장될 것이라는 가설도 제시돼왔는데, 이러한 가설은 기억을 저장하는 세포들의 분포를 뇌 전체에서 확인(매핑)함으로써 확실한 검증이 가능하나, 이는 기술적 한계로 이뤄지지 못했다.
공동연구팀은 기존 팀이 개발한 전뇌 투명화 기술(SHIELD) 및 초고속 전뇌 면역염색 기술(eFLASH)을 통해, 공간 공포 기억을 학습한 생쥐에서 기억의 학습과 회상 시 모두 활성화된 세포들을 뇌 전체에서 매핑했다. 이를 통해 공간 공포 기억을 저장하고 있을 확률이 높은 뇌 부위의 세포들을 생쥐 뇌 전체에서 찾아낼 수 있었다. 이후 해당 세포들을 광유전학적 방법으로 조절해 해당 세포들에 공간 공포 기억이 저장됐음을 확인함으로써, 공간 공포 기억을 저장하는 7개의 새로운 뇌 부위와 세포들을 연구팀은 찾아낼 수 있었다.
그렇다면 기억에 다양한 뇌 부위의 기억저장 세포들이 모두 필요한 것일까? 연구팀은 이를 확인하기 위해, 화학유전학 기법을 통해 다양한 뇌 부위의 기억저장 세포들을 한꺼번에 자극해 보았으며, 그 결과 뇌의 한 부위의 기억저장 세포를 자극했을 때와는 다르게, 자연적인 기억 회상에 가까운 기억의 완전한 회상이 유도됨을 확인했다. 이는 다양한 뇌 부위의 기억저장 세포들의 활성이 기억에 모두 필요함을 의미한다.
박영균 교수는 "이번 연구는 연구팀이 기존에 개발한 기술들에 힘입어 기억저장 세포의 매핑을 최초로 실현하고, 이를 통해 단일 기억이 다양한 뇌 부위 세포들에 흩어져 저장됨을 증명한 데 의의가 있다ˮ며, "이번 연구에서 밝혀진 기억저장 세포의 뇌 지도는, 각 뇌 부위의 세포 및 세포 간 상호작용이 기억에 있어 각각 어떠한 세부적인 기능을 하는지에 관한 연구를 촉진함으로써, 기억의 메커니즘에 대한 완전한 이해를 도울 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 4월 4일 자로 게재됐다(논문명: Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions)
2022.06.02
조회수 7748