-
박종세 교수팀, 2024 IISWC 다수 상 동시 석권
우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다.
박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다.
IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여하는데 올해에는 박 교수팀의 논문이 두 상을 모두 단독으로 수상했다.
이번 수상 연구는 대규모 거대언어모델(LLM) 추론 서비스를 위한 하드웨어와 소프트웨어 통합 시뮬레이션 인프라를 최초 개발한 점, 향후 LLM 추론 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드의 완성도와 사용자 편의성 측면에서 높은 평가를 받았다.
이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 하드웨어와 소프트웨어를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다.
이를 통해 GPU(그래픽처리장치), NPU(신경망처리장치)와 PIM(지능형메모리반도체)과 같은 다양한 하드웨어뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 초거대 언어모델 추론을 위한 소프트웨어적 요소를 모두 함께 시뮬레이션할 수 있었다.
이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다.
상을 받은 KAIST 전산학부 박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 AI 반도체와 시스템 소프트웨어의 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구(Tool)을 공개할 수 있게 되어 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것이다”라고 소감을 전했다.
이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI(Generative AI)로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.
2024.10.11
조회수 3655
-
순수한 입방정 얼음 제작에 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 기존에 만들기 어려웠던 입방정 얼음을 선택적으로 형성시키는 데에 성공하며, 입방정 얼음의 형성 조건 및 얼음의 상전이를 원자단위에서 연구한 결과를 발표했다고 20일 밝혔다.
얼음은 다양한 온도와 압력 조건에 따라 20여 가지 이상의 구조를 갖는 대표적인 동질이상 물질이다. 일반적인 자연환경에서는 육각형의 구조를 갖는 육방정의 얼음이 관찰된다. 그동안 과학자들은 다른 구조를 갖는 얼음이 육방정 얼음과는 다른 물리적, 화학적, 기계적 특성을 가질 것으로 예상했으나, 고압이나 초저온이 필요했기에 육방정과 다른 구조를 갖는 얼음을 형성시키는 데 어려움을 겪고 있었다.
육 교수 연구팀은 소량의 수분이 존재하는 고진공 환경의 투과전자현미경 내부에서 극저온 환경을 모사해 얼음이 형성되는 것을 원자 단위에서 관찰하는 데 성공했다. 해당 관찰을 통해 얼음이 초기에는 준안정적인 입방정 상으로 형성된다는 것을 이해하고, 순수한 입방정 얼음을 제작하는 데 성공했다. 나아가, 이러한 입방정 얼음은 불안정하여 에너지를 받으면 쉽게 안정적인 육방정 얼음으로 전이된다는 것 또한 밝혔다.
연구팀은 얼음 형성시 얼음 입자의 크기에 따라 얼음의 상이 다르게 형성되는 것을 밝혀냈다. 높은 온도에서 형성된 얼음의 경우 입자의 크기가 크게 분포하며 대부분 육방정상과 입방정상을 같이 지니는 복합상 얼음이 형성되며, 형성 초기 단계의 작은 얼음 입자의 경우 순수한 입방정상으로 존재하는 것을 확인했다.
또한, 복합 상 얼음의 경우 얼음이 에너지를 받아 녹는 과정에서 준안정적인 입방정상이 안정적인 육방정상으로 상전이가 일어나며, 이는 얼음 내의 결함의 이동을 통해 낮은 에너지에서도 손쉽게 일어난다는 사실을 밝혀냈다. 해당 사실은 극저온 전자현미경을 이용해 얼음의 구조와 동적 행동을 원자단위에서 상세히 분석할 수 있었다. 이번 연구에서는 입방정상이 육방정상으로의 상전이 현상을 처음으로 직접 관찰했다는 것에 의미가 크다.
육종민 교수는 "이번 연구는 일반적인 대기 중에서 왜 육방정의 얼음이 형성되는지에 대한 가장 기초적이면서 근본적인 해답을 줄 수 있을 것이다"며 "이번 연구를 통해 우주에서 물의 흔적 조사나 사각수 연구 등 다양한 분야에서 중요한 의미를 지닌다"라고 말했다.
신소재공학과 박지수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Nano Letters' 2024년 9월호에 표지 논문으로 선정됐다. (논문명: Phase Transition of Cubic Ice to Hexagonal Ice During Growth and Decomposition).
2024.09.20
조회수 5898
-
100배 정밀한 신개념 빛 측정 센서 개발
자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다.
*메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음
파면은 파동이 동일한 위상을 가지고 있는 지점들을 연결한 면이다. 바다에서 보이는 파도는 일상생활에서 볼 수 있는 파면의 한 예다. 파도가 장애물을 만나거나 환경이 달라지면 모양이 바뀌듯, 빛의 파면도 물체를 통과하거나 반사될 때 물체의 모양에 따라 변한다. 따라서 물체를 통과하거나 반사된 빛의 파면을 분석하면, 물체에 의해 변화되는 빛의 위상 정보를 얻을 수 있다.
샥-하트만 파면 센서(Shack-Hartmann wavefront sensor)는 렌즈 배열과 카메라가 결합된 구조로, 각 렌즈에 입사하는 파면의 경사도에 따라 달라지는 초점의 위치를 분석해 입사된 빛의 파면을 복구한다. 샥-하트만 파면 센서는 간단한 구조와 높은 견고성으로 천문학 및 광학 시스템 평가 등 산업 현장에서 널리 사용되고 있다. 하지만, 기존 샥-하트만 파면 센서는 마이크로 렌즈 크기 때문에 공간해상도가 1 mm2 당 100개 수준으로 제한되어 복잡한 물체의 위상 이미징이 불가능했다.
연구팀은 나노 공정 기술을 통해 제작된 메타표면을 이용해 이 문제를 해결했다. 이번 연구에서 메타표면 기술로 제작된 메타 렌즈를 활용해 시판되고 있는 샥-하트만 파면 센서보다 약 100배 높은 공간해상도를 가지는 메타 샥-하트만 파면 센서를 개발했다. 개발된 메타 샥-하트만 파면 센서는 높은 공간해상도를 이용해 기존 샥-하트만 파면 센서로는 측정이 불가능했던 복잡한 구조체의 위상 이미지를 얻는 데 성공했다.
또한 연구팀은 메타 샥-하트만 파면 센서를 통해 3차원 위치를 추적했다. 이 과정에서, 메타 샥-하트만 파면 센서가 거의 모든 가시광 영역에서 작동하며, 기존 샥-하트만 파면 센서보다 약 10배 큰 시야각을 가지는 것을 확인했다. 이 기술을 활용하면 넓은 영역에서 물체의 3차원 위치의 추적이 가능하다.
연구를 주도한 고기현 박사는 “메타 샥-하트만 파면 센서는 기존 기술보다 견고하고 작은 크기를 가지는 장비로서 초기 질병 진단, 제조 공정의 결함 검출과 자율 주행 등 다양한 분야에 적용될 수 있을 것으로 기대된다”고 밝혔다. 또한 "메타 샥-하트만 파면 센서는 기존 기술의 한계를 극복하고, 위상 이미징 기술의 새로운 기준을 세웠다”며, “이번 연구에서는 메타 샥-하트만 파면 센서의 개념 검증에 집중했고, 향후 메타표면의 우수한 빛 조작 능력을 활용해 초소형·다기능 메타 파면 센서를 개발하는 데 주력할 것이다”라고 밝혔다.
우리 대학 바이오및뇌공학과 고기현 박사가 제1 저자, 장무석 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `라이트:사이언스&어플리케이션즈(Light:Science&Applications)'에 지난 8월 12일 字 출판됐다.
(논문명: Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects)
한편 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 바이오·의료기술개발사업, STEAM연구사업, 선도연구센터지원사업(ERC), 우수신진연구자사업, 교육부가 주관하는 박사후국내연수사업, 삼성미래기술육성사업, 삼성설비연산학과제의 지원을 받아 수행됐다.
2024.08.20
조회수 4628
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 4211
-
가짜 분유는 이제 스마트폰으로 손쉽게 찾아낸다
가짜 분유 파문은 현재까지도 지속적으로 발생하고 있으며 수만 명의 영유아의 생명을 위협하는 심각한 전세계적 문제다. 하지만 이러한 가짜 분유의 진위 여부를 쉽게 확인하는 것은 거의 불가능에 가깝다. 공동연구진은 스마트폰을 활용해 위조 분유를 빠르고 정확하게 탐지하는 시스템을 개발해서 화제가 되고 있다.
우리 대학 전산학부 한준 교수 연구팀이 연세대, POSTECH, 싱가포르국립대와 공동연구를 통해서 스마트폰을 이용한 가짜 분유 탐지 기술을 개발했다고 2일 밝혔다.
한준 교수 연구팀은 스마트폰에 탑재된 일반 카메라만을 사용해 위조 분말을 탐지하는 ‘파우듀(PowDew)’ 시스템을 개발했다. 연구팀이 최초 개발한 이 시스템은 분말 식품의 성분 및 제조 과정 등에 따라 결정되는 고유한 물리적 성질(습윤성 및 다공성 등)과 액체류와의 상호작용을 이용했다.
이 시스템을 활용하면 소비자가 본인의 스마트폰 카메라로 분유 가루 위에 떨어진 물방울의 움직임을 관측해 손쉽게 분유의 진위를 확인할 수 있다고 전했다. 또한 연구팀은 실험을 통해 6개의 서로 다른 분유 브랜드에 대해 최대 96.1%의 높은 정확도로 위조 분유를 탐지할 수 있음을 확인했다.
나아가 이 기술의 응용 분야는 향후 분유 뿐만 아니라 다양한 식품 및 의약품군으로 확장될 수 있을 것으로 기대된다. 소비자뿐만 아니라 유통사 및 정부 기관의 손쉬운 진위 확인도 가능하게 하여 효율적이고 안전한 제품 유통을 가능하게 할 수 있다.
한준 교수는 “이 기술이 소비자들이 쉽게 사용할 수 있는 검사 도구가 되어 시장에 유통되는 위조 분말 식품을 줄이는 데 크게 기여할 것”이라며 “다양한 분야로의 확장을 통해 위조 제품 문제 해결에 앞장서겠다”고 말했다.
연구팀은 해당 연구의 중요성과 혁신성을 인정받아 모바일 컴퓨팅 분야 최고 권위 국제 학술대회인 ‘ACM 모비시스(ACM MobiSys)’에서 2024 최우수논문상(Best Paper Award)을 수상했다.
(논문명: PowDew: Detecting Counterfeit Powdered Food Products using a Commodity Smartphone)
한편 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2024.08.02
조회수 4916
-
로봇 등 온디바이스 인공지능 실현 가능
자율주행차, 로봇 등 온디바이스 자율 시스템 환경에서 클라우드의 원격 컴퓨팅 자원 없이 기기 자체에 내장된 인공지능 칩을 활용한 온디바이스 자원만으로 적응형 AI를 실현하는 기술이 개발됐다.
우리 대학 전산학부 박종세 교수 연구팀이 지난 6월 29일부터 7월 3일까지 아르헨티나 부에노스아이레스에서 열린 ‘2024 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2024)’에서 최우수 연구 기록물상(Distinguished Artifact Award)을 수상했다고 1일 밝혔다.
* 논문명: 자율 시스템의 비디오 분석을 위한 연속학습 가속화 기법(DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics)
국제 컴퓨터 구조 심포지움(ISCA)은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회로 올해는 423편의 논문이 제출됐으며 그중 83편 만이 채택됐다. (채택률 19.6%). 최우수 연구 기록물 상은 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 연구 기록물의 혁신성, 활용 가능성, 영향력을 고려해 선정된다.
이번 수상 연구는 적응형 AI의 기반 기술인 ‘연속 학습’ 가속을 위한 NPU(신경망처리장치) 구조 및 온디바이스 소프트웨어 시스템을 최초 개발한 점, 향후 온디바이스 AI 시스템 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드, 데이터 등의 완성도 측면에서 높은 평가를 받았다.
연구 결과는 소프트웨어 중심 자동차(SDV; Software-Defined Vehicles), 소프트웨어 중심 로봇(SDR; Software-Defined Robots)으로 대표되는 미래 모빌리티 환경에서 온디바이스 AI 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.
상을 받은 전산학부 박종세 교수는 “이번 연구를 통해 온디바이스 자원만으로 적응형 AI를 실현할 수 있다는 것을 입증하게 되어 매우 기쁘고 이 성과는 학생들의 헌신적인 노력과 구글 및 메타 연구자들과의 긴밀한 협력 덕분이다”라며, “앞으로도 온디바이스 AI를 위한 하드웨어와 소프트웨어 연구를 지속해 나갈 것이다”라고 소감을 전했다.
이번 연구는 우리 대학 전산학부 김윤성, 오창훈, 황진우, 김원웅, 오성룡, 이유빈 학생들과 메타(Meta)의 하딕 샤르마(Hardik Sharma) 박사, 구글 딥마인드(Google Deepmind)의 아미르 야즈단바크시(Amir Yazdanbakhsh) 박사, 전산학부 박종세 교수가 참여했다.
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 대학ICT연구센터(ITRC), 인공지능대학원지원사업, 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2024.08.01
조회수 5102
-
차세대 새로운 패러다임 동영상 인식기술 개발
챗GPT와 같은 거대 언어 모델의 근간이 되는 트랜스포머로 구축된 기존 비디오 모델보다 8배 낮은 연산량과 4배 낮은 메모리 사용량으로도 높은 정확도를 기록했으며, 추론 속도 또한 기존 트랜스포머 기반 모델 대비 4배의 매우 빠른 속도를 달성한 동영상 인식기술이 우리 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 김창익 교수 연구팀이 초고효율 동영상 인식 모델 ‘비디오맘바(VideoMamba)’를 개발했다고 23일 밝혔다.
비디오맘바는 기존 트랜스포머 기반 모델들이 가지고 있는 높은 계산 복잡성을 해결하기 위해 설계된 새로운 동영상 인식 모델이다. 기존의 트랜스포머 기반 모델들은 셀프-어텐션(self-attention)이라는 메커니즘에 의존해 계산 복잡도가 제곱으로 증가하는 문제를 가지고 있었다.
김창익 교수 연구팀의 비디오맘바는 선택적 상태 공간 모델(Selective State Space Model, Selective SSM)* 메커니즘을 활용해 선형 복잡도**로 효율적인 처리가 가능하다. 이를 통해 비디오맘바는 동영상의 시공간적 정보를 효과적으로 포착해 긴 종속성을 가진 동영상 데이터도 효율적으로 처리할 수 있다.
*선택적 상태 공간 모델(Selective SSM): 입력에 따라 동적으로 매개변수를 조정하여 시퀀스 데이터의 문맥을 더 잘 이해하는 상태 공간 모델
**선형 복잡도:입력 데이터의 크기에 비례하여 계산량이 증가하는 알고리즘 복잡도
김창익 교수 연구팀은 동영상 인식 모델의 효율성을 극대화하기 위해 비디오맘바에 1차원 데이터 처리에 국한된 기존 선택적 상태 공간 메커니즘을 3차원 시공간 데이터 분석이 가능하도록 고도화한 시공간적 전방 및 후방 선택적 상태 공간 모델(spatio-temporal forward and backward SSM)을 도입했다. 이 모델은 순서가 없는 공간 정보와 순차적인 시간 정보를 효과적으로 통합해 인식 성능을 향상한다. 연구팀은 다양한 동영상 인식 벤치마크에서 비디오맘바의 성능을 검증했다.
연구팀이 개발한 비디오맘바는 영상 분석이 필요한 다양한 응용 분야에서 효율적이고 실용적인 솔루션을 제공할 수 있다. 예를 들어, 자율주행에서는 주행 영상을 분석해 도로 상황을 정확하게 파악하고, 보행자와 장애물을 실시간으로 인식해 사고를 예방할 수 있다. 의료 분야에서는 수술 영상을 분석해 환자의 상태를 실시간으로 모니터링하고 긴급 상황 발생 시 신속히 대처할 수 있다. 스포츠 분야에서는 경기 중 선수들의 움직임과 전술을 분석해 전략을 개선하고, 훈련 중 피로도나 부상 가능성을 실시간으로 감지해 예방할 수 있다.
연구를 주도한 김창익 교수는 “비디오맘바의 빠른 처리 속도와 낮은 메모리 사용량, 그리고 뛰어난 성능은 우리 생활에서의 다양한 동영상 활용 분야에 큰 장점을 제공할 것이다”고 연구의 의의를 설명했다.
이번 연구에는 전기및전자공학부 박진영 석박사통합과정, 김희선 박사과정, 고강욱 박사과정이 공동 제1 저자, 김민범 박사과정이 공동 저자, 그리고 전기및전자공학부 김창익 교수가 교신 저자로 참여했다. 연구 결과는 올해 9월 이탈리아 밀라노에서 열리는 컴퓨터 비전 분야 최우수 국제 학회 중 하나인 ‘European Conference on Computer Vision(ECCV) 2024’에서 발표될 예정이다. (논문명: VideoMamba: Spatio-Temporal Selective State Space Model)
한편, 이번 연구는 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행됐다. (No. 2020-0-00153, 기계학습 모델 보안 역기능 취약점 자동 탐지 및 방어 기술 개발)
2024.07.23
조회수 3962
-
군인을 위한 과학적 온라인 명상프로그램 도입
우리 대학은 명상과학연구소 김은미 교수 연구팀이 군인들의 스트레스와 불안을 감소시켜 군의 전투력을 보장하고 군인(학생)들의 정신적 건강과 학업 지속성을 위한 과학적 명상프로그램을 개발하여 1년 동안 성공적으로 운영해왔으며, 미 해군 참모대학과 공동으로 수강생 데이터를 심층 분석하여 국제 학술대회에 발표하였다고 밝혔다.
해당 명상 프로그램은 2023년 가을학기부터 군복무 중인 학부생들을 대상으로 온라인 명상 수업을 도입하여, 학생들의 정신적 건강과 학업 성취를 지원하고 있다. 해당 강의는 비실시간 온라인 강의영상과 과제로 구성되어 있으며, 수강생들의 스트레스 완화, 대인관계 개선, 전역 후 진로 결정에 도움을 주는 것을 목적으로 설계되었다. 김 교수 연구팀은 이외에도 세계적인 온라인 교육 플랫폼인 Coursera에서 명상 프로그램을 운영하는 등 콘텐츠를 추가 및 개선해오고 있다.
명상과학은 최근 몇 년간 마인드풀니스(Mindfulness)라는 용어로 각광받아왔다. 명상과학은 미국의 아이비리그 중심으로 의학, 뇌과학, 심리학 분야에서 꾸준히 성장하고 있는 융합학문 분야이다. 또한, 명상과학의 시장규모는 7조 원으로 평가받으며(2022년 기준), 꾸준한 성장이 예상된다.
KAIST 명상과학연구소 김은미 교수와 美해군참모대학 리더십학부 리앤 페리, 리사 커 교수가 참여한 이번 연구는 국제 학술대회 `International Society for Contemplative Reserach' 에 발표되었다. (발표명 : Online Mindfulness in the Military : A Korean Pilot Study)
해당 연구는 미국 해군참모대학교의 리앤 페리 교수와 리사 커 교수와의 국제공동 연구로 명상이 군복무 중인 학생들의 정신적, 정서적 안정에 미치는 긍정적인 영향을 체계적으로 검증했다. 이를 통해 학생들이 보다 건강한 군 생활을 할 수 있도록 지원한다.
우리 대학은 명상이 학업 스트레스와 군 생활의 어려움을 겪고 있는 학생들에게 유익한 도구가 될 수 있음을 인식하고, 병영환경 내에서 축적된 양질의 데이터를 통해 명상과학 연구를 고도화하고자 한다. 이를 통해 휴전국가이며, 고도의 과학성장을 하고 있는 대한민국에서의 유의미한 연구성과를 도출할 것으로 기대된다.
김은미 연구부교수와 함께 연구에 참여하고 있는 박규순 소령, 박기웅 소령, 김현준 대위, 김상성 학생은 "이번 온라인 명상 수업이 군 복무 중인 학부생들의 정신적 건강을 증진하고, 보다 나은 학업 성취를 이룰 수 있도록 도와줄 것"이라며 "앞으로도 군복무 학생들의 복지와 학업 지원을 위해 더 많은 명상 수업 보급을 희망한다"라고 밝혔다.
2024.07.05
조회수 3507
-
김성민 교수팀, 모바일 최고 국제학회 최우수논문상 다회 수상 쾌거
우리 대학 전기및전자공학부 김성민 교수 연구팀이 스마트 팩토리에서 사각지대 없이 정밀한 위치를 추적하는 기술을 세계 최초로 개발했다고 5일 밝혔다. 목표물에 무전원 태그를 부착해, 장애물에 가려진 상황에서도 센티미터(cm) 이하의 정확도로 3차원 위치를 추적할 수 있는 기술이다.
해당 연구를 통해 연구팀은 모바일 컴퓨팅 분야 최고 권위 국제 학술대회인 ACM 모비시스(ACM MobiSys)에서 2022 최우수논문상에 이어 2024 최우수논문상을 수상하는 쾌거를 이뤘다. 해당 학회에서 최우수논문상을 다회 수상한 연구팀은 김성민 교수 연구팀과, 미국 미시간대, 그리고 예일대 뿐이다(주 저자 기준).
(논문명: SuperSight: Sub-cm NLOS Localization for mmWave Backscatter)
연구팀이 최초 개발한 무선 태그는, 기존 기술(UWB, Ultra Wide Band) 대비 반사성이 10배 이상 높은 밀리미터파(mmWave)*를 활용, 장애물을 우회하는 반사 신호를 확보해 사각지대 없는 위치추적이 가능하다. 반사의 방향에 따라 고유한 신호를 발생시키는 태그가 각 신호의 전파 경로를 파악하여 목표물의 위치를 추적하는 원리다.
*밀리미터파: 30~300기가헤르츠(GHz)의 주파수를 갖는 전파로 5G/6G 등 차세대 표준에서 도입을 준비 중인 대역이다.
이 기술은 가구, 전자제품 등 다양한 실내 장애물에 막혀 작동 범위가 제한되는 기존 기술의 문제점을 해결하고, 더불어 15배 이상 높은 3차원 위치 정확도(8.3mm)를 갖는다. 즉, 잦은 연결 장애를 겪는 현재에 비해 안정적으로 실내 목표물의 정확한 위치를 추적할 수 있어, 스마트 팩토리 및 증강 현실(AR) 등 광범위한 위치 기반 서비스에 활용될 수 있다.
무선 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하는 방식으로 작동한다. 주변 빛을 반사하는 거울과 같이, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다.
김성민 교수는 “태그는 천장 타일이나 컴퓨터 본체 등 주변 사물을 반사체로 이용해 임의의 실내 환경에서 사각지대 없이 작동한다”며 “실내 위치추적의 안정성 문제를 해결함으로써, 포괄적인 위치 기반 서비스의 보급을 기대한다”고 말했다.
한편 이번 연구는 정보통신기획평가원 ITRC 혁신도약형과제와 삼성미래기술육성사업의 지원을 받아 수행됐다.
2024.07.05
조회수 4019
-
인공지능으로 배터리 원소, 충방전 상태 인식
국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다.
우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다.
*합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다.
연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자의 크기 분석을 위해 SEM을 활용하고, 열화된 배터리 소재의 경우 입자가 깨지고 부서지는 형상으로부터 신뢰성을 예측하는 것에 착안했다. 연구팀은 반도체 공정에서와 같이 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성이 되었는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있다면 획기적일 것으로 판단했다.
연구진은 자율주행차에 적용가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜서 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다. 이런 방법론이 첨가제가 들어간 양극재에도 적용가능한 지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다. 이에 연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다.
연구를 이끈 홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있고 이번 연구에서 개발된 현미경 영상 기반 배터리 소재의 함량 및 상태 감별 방법론은 향후 배터리 소재의 성능과 품질을 향상하는 데 중요한 역할을 하게 될 것으로 기대된다”고 전망했다.
한편, 이번 연구는 공동 제1 저자인 신소재공학과 졸업생 오지민 박사와 염지원 박사와 공동저자인 ETRI 김광만 박사와 미국 드렉셀 대학교 아가르(Agar) 교수가 참여하였고, 한국연구재단(2020M3H4A3081880, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 미국 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘엔피제이 컴퓨테이셔날 머티리얼즈(npj computational materials)’에 지난 5월 4일 자 출판됐다. (논문 제목: Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images)
2024.07.02
조회수 6108
-
잡아당겨도 고화질 유지하는 디스플레이 개발
평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다.
공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다.
기존의 신축형 디스플레이는 고정된 단단한 발광 부분을 이용하여 성능을 확보하면서, 굽혀진 모양의 연결부를 통해 신축성을 확보하는 경우가 일반적이다. 그런데 이 경우 빛을 내지 않는 굽힘 모양 연결부로 인해, 전체 면적에서 발광면적이 차지하는 비율이 낮은 한계점이 있다. 특히, 신축시에는 늘어난 굽힘 모양 연결부가 차지하는 면적이 더욱 커지면서 발광면적 비율이 한층 더 감소하는 문제가 있다.
공동연구팀은 제안된 구조체를 통해 신축 전 발광면적비가 100%에 근접하는 최고 수준을 달성했으며, 30%의 시스템 신축 후 발광면적비 또한 단지 10% 감소하는 플랫폼을 구현했다. 이는 같은 변형하에서 기존 플랫폼이 60% 수준의 높은 발광면적비 감소를 보이는 것과 대조적인 결과다. 또한 본 플랫폼은 반복 동작 및 다양한 외력 하에서도, 강건하게 동작하는 기계적 안정성을 보였다.
공동연구팀은 구형 물체, 실린더, 인체 부위와 같은 곡면에서 안정적으로 동작해, 풍선의 팽창이나 관절의 움직임 등을 수용할 수 있는 웨어러블 및 자유곡면에 부착할 수 있는 광원에 대한 응용성을 확인했으며, 숨겨진 발광영역의 독립적 구동을 통해 신축 시 저감되는 해상도 보상이 가능한 미래 디스플레이의 가능성을 확인하였다.
유승협 교수는 “이미 우리는 폴더블 휴대폰이나 곡면형 모니터 같이 더 이상 평면이 아닌 디스플레이를 쉽게 볼 수 있는 시대에 살고 있는데, 미래에는 디스플레이의 형태가 더욱 다양해지면서 궁극적으로 늘려도 동작하는 신축형 디스플레이 기술로 확장될 것으로 기대된다”면서 “이번에 개발된 기술은, 우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이의 난제를 극복하는 방법을 제시한 것으로서, 신축형 디스플레이의 제품화를 더욱 가속화하는 계기가 되기를 희망한다”고 말했다.
유승협 교수 연구실의 이동균 박사(現 서울대학교 연수연구원)가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 6월 5일자 게재됐으며 (논문명: Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation, DOI:: 10.1038/s41467-024-48396-w), 미국의 전기전자기술자협회 (Institute of Electrical and Electronics Engineers, IEEE)의 매거진인 ‘IEEE Spectrum’에 의해 온라인 뉴스로 소개되기도 하였다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.06.11
조회수 5968
-
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다.
세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다.
지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다.
연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다.
연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다.
연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다.
*분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법
최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다.
최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다.
우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes)
한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.06.05
조회수 5348