-
최양규 교수, 5단 나노선 통한 D램-플래시 융‧복합메모리 개발
우리 대학 전기 및 전자공학부 최양규 교수와 이병현 박사과정이 나노선의 5단 수직 적층 기술을 통해 D램과 플래시 메모리 동작이 동시에 가능한 융합메모리 반도체 소자를 개발했다.
이번 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8월 31일자 온라인 판에 게재됐다.
메모리 반도체는 정보화 기술 사회의 핵심 기기로서 국내 반도체 산업의 주력 제품이다. 메모리 반도체 분야는 크게 D램과 플래시 메모리로 양분되는데 이는 각 메모리가 가진 고유 특성 때문이다.
D램은 빠른 동작속도를 자랑하지만 휘발성 메모리이기 때문에 안정적 정보 저장을 위해 전력이 많이 소모된다. 반면 플래시 메모리는 D램에 비해 느린 동작속도가 문제점으로 지적된다.
연구팀은 D램과 플래시 메모리 기능이 하나의 트랜지스터 안에서 동시에 동작하는 전면-게이트 실리콘 나노선 구조 기반의 융합 메모리 소자를 제안했다.
그러나 이 구조는 트랜지스터의 소형화에 따른 나노선 면적 감소로 인해 동작 전류도 같이 감소됐고 이는 메모리 소자 성능의 저하로 이어졌다.
문제 해결을 위해 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단까지 쌓았다. 이러한 5단 수직 집적 실리콘 나노선 채널을 보유한 융합 메모리소자는 단일 나노선 기반의 메모리 소자와 대비해 5배의 향상된 성능을 보였다.
이 연구를 통해 시스템 레벨에서 칩 사이즈의 소형화 및 전력 효율의 개선, 패키징 공정 단순화를 통한 제작비용 절감 등이 가능하다. 시스템 안에서 칩 간의 간섭효과를 줄여줌으로써 시스템 전체 속도 향상에도 기여가 가능해 융합 메모리의 실효성이 높아질 것으로 기대된다.
또한 수직 집적 나노선 구조는 말 그대로 위쪽으로 채널이 쌓여있기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다.
이러한 수직 집적은 지난 해 최양규 교수 연구팀에서 개발된 일괄 플라즈마 건식 식각 공정을 통해 이뤄졌다. 이병현 연구원은 이 기술을 통해 작년 비 메모리 반도체 소자 개발에 성공했고, 이번 연구를 통해 고성능 융합 메모리 소자를 개발했다.
최양규 교수는 “이번 연구를 통한 메모리 반도체의 제작 공정과 성능의 개선 및 높은 실효성이 기대된다”며 “궁극적으로는 메모리 반도체의 소형화를 계속 이어나갈 것으로 예상한다”고 말했다.
이병현 연구원은 “나노종합기술원의 강민호 박사를 포함한 관련 엔지니어들의 적극적 기술 지원이 큰 도움이 됐다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스(CMOS) THz 기술 융합 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전자 현미경 사진 및 투과 전자 현미경 사진
그림2. 고성능 융합메모리에 대한 요약 모식도
2016.09.21
조회수 13263
-
이건재 교수, 유연고집적회로의 연속적패키징 기술 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 한국기계연구원 김재현 박사 공동 연구팀이 롤 기반 공정을 통해 플렉서블 기기의 핵심기술인 유연 고집적회로를 연속적으로 패키징(소자와 전자기기를 연결하는 전기적 포장) 및 전사(轉寫)할 수 있는 기술을 개발했다.
또한 개발된 롤 기반 전사 및 패키징 기술을 유연 낸드플래시 메모리(전원이 끊겨도 저장된 데이터를 잃어버리지 않는 비휘발성 메모리의 일종)에 적용하는데 성공했다.
이번 연구 결과는 재료과학 분야 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 20일자 온라인 판에 게재됐다.
롤 공정(유연기판을 회전하는 롤에 감으며 동시에 공정을 진행하는 방식) 기반의 유연전자 생산기술은 높은 생산효율을 바탕으로 웨어러블 및 플렉서블 기기 상용화에 중요한 역할을 할 것으로 기대되고 있다.
그러나 지금까지는 고집적회로를 롤 공정으로 구현하는 방법 및 주변회로와 상호 연결하는 패키징 기술이 해결되지 않아 실용화에 한계가 있었다.
문제 해결을 위해 연구팀은 기존 반도체 공정을 이용해 실리콘 기판에 낸드 플래시 메모리를 형성한 후 수백 나노미터(10분의 1m) 두께로 얇게 만들었다.
그 후 개발한 롤 기반 전사 및 패키징 기술을 통해 소자를 유연기판에 옮기는 동시에 이방성 전도 필름을 이용해 상호 연결하는 기술을 구현했다.
연구팀의 최종적인 실리콘 기반 유연 낸드플래시 메모리는 반복적인 휘어짐에도 모든 기능이 정상적으로 동작했고 외부와의 상호연결도 매우 안정적으로 유지됐다.
개발된 롤 기반 유연 고집적회로 기술은 유연 어플리케이션 프로세서(AP), 고집적 메모리, 고속 통신소자 등의 양산에 응용 가능할 것으로 기대된다.
이 교수는 “높은 생산성을 지닌 롤 기반 전사 기술을 이용해 단결정 실리콘 박막 고집적회로를 유연한 인쇄회로 기판 위에 패키징하는 생산기술을 확보했다”며 “향후 유연 디스플레이 및 배터리 기술과 함께 휘어지는 컴퓨터 구현의 핵심 생산 기술이 될 것으로 기대된다”고 말했다.
김재현 박사는 “한국기계연구원이 보유한 롤 기반 전사 기술을 이용해 단결정 실리콘 고집적소자를 유연한 폴리머 인쇄회로 기판 상에 손상 없이 전사함과 동시에 소자와 인쇄회로기판이 전기적으로 연결되도록 하는 롤 기반의 생산 공정 기술을 개발하였다”며 “이 기술은 향후 고성능 전자 소자를 유연 기판 위에 형성해 사물인터넷 및 웨어러블용 고성능 전자기기를 제조하는 핵심 생산 기술이 될 것으로 전망한다.”라고 말했다.
이건재 교수는 2013년도에 0.18 씨모스(CMOS) 공정기반으로 컴퓨터의 두뇌에 해당하는 휘어지는 유연 고집적회로를 최초로 구현했다. 특히 반도체분야 최고 권위학회인 국제반도체소자학회(IEDM)에서 초청받아 발표하는 등 세계적인 주목을 받았다.
한국기계연구원 김재현 박사 연구팀은 2009년부터 롤 스탬프를 이용해 박막소자를 옮기는 기술을 연구하고 있다. 관련 롤 전사 장비 기술을 디스플레이 및 반도체 용도의 롤 장비 회사에 기술이전하기도 했다.
이번 연구는 2013년부터 진행된 한국기계연구원의 나노소재 응용 고성능 유연소자기술 기반구축사업의 일환으로 수행됐다. 이건재 교수는 교원창업을 통해 유연한 고집적회로 관련 기술 상용화를 계획 중이다.
□ 그림 설명
그림1. 연속 롤-패키징 공정의 개요 모식도
그림2. 제작된 유연 실리콘 낸드 플래시메모리
2016.09.01
조회수 18391
-
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉
우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다.
AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다.
김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다.
김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다.
창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다.
김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다.
김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 14837
-
이정용 교수, 〈와인의 눈물〉 현상 이용한 유기 태양전지 생산 기술 개발
〈 이 정 용 교수 〉
우리 대학 EEWS 대학원 이정용 교수 연구팀이 ‘와인의 눈물’로 잘 알려진 마랑고니 효과를 이용해 물 표면에서 유기 태양전지를 제작할 수 있는 기술을 개발했다.
노종현, 정선주 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다.
유기 태양전지는 매우 가볍고 반투명하며 쉽게 휘어지는 성질 때문에 차세대 웨어러블 전자소자의 에너지원으로 주목받고 있다.
최근 성능이 향상되며 다양한 상업적 응용 가능성이 높아지고 있지만 대면적에서 높은 성능을 유지하는 공정에는 한계가 있어 상용화가 지연되고 있다.
연구팀은 자발적 순간 확산 현상, 즉 ‘마랑고니 효과’라고 불리는 일상에서 쉽게 접할 수 있는 과학적 원리를 적용해 빠른 시간에 대면적의 고품질 유기 박막을 형성하는 데 성공했다.
마랑고니 효과는 표면장력이 다른 두 용액이 접할 때 이 표면장력 차이를 해소하기 위해 일어나는 빠른 물질 수송 현상을 뜻한다.
잔에 담긴 와인을 빙글빙글 돌리면 잔 표면에 물방울이 형성돼 흘러내리는 현상이나 후춧가루가 뿌려진 물 표면에 세제를 한 방울 떨어트리면 후춧가루들이 순식간에 가장자리로 쓸려가는 현상 등이 이에 해당된다.
이 기술은 유기 물질이 녹아 들어간 용액을 물에 떨어트리는 순간 물 표면을 따라 빠르게 용액이 퍼지고 얇은 박막을 형성한다. 그 후 용액 속 용매는 공기 중과 물속으로 사라지고 대신 그 자리에 매우 얇고 균일한 유기 박막이 형성되는 원리이다.
이 기술은 여러 장점을 갖는다. 우선 종이와 곡면 유리같이 균일하게 유기 박막을 형성하기 어려운 곳에도 균일하게 박막을 전사하는 것이 가능하다.
또한 수 초 이내의 짧은 시간에 박막이 형성되기 때문에 유기 박막 손상의 원인인 산소 흡착을 최소한으로 막아줄 수 있다. 산소가 존재하는 대기 중에서도 높은 품질의 박막을 형성할 수 있는 것이 자발적 순간 확산 공정의 가장 큰 장점이다.
연구팀은 이 기술로 대기 중에서 유기 태양전지를 제작했는데 산소 및 수분으로 인한 악조건을 극복하고 고효율의 전지를 확보했다. 이는 산소와 수분이 제한된 환경에서 제작한 태양전지와 비슷한 효율을 갖는다.
산소와 수분 조건을 극복했다는 점은 대량 생산의 핵심 기술인 롤투롤(Roll 2 Roll) 공정에 적용가능하다는 것을 뜻한다.
롤투롤 공정은 롤러를 이용해 알루미늄 호일같은 유연 기판에 연속적 생산을 가능하게 하는 기술로, 저렴하고 대량 생산이 가능해 유기 태양전지를 상용화하기 위한 필수 기술이다.
그러나 기존 롤투롤 공정에 많이 쓰이던 슬롯다이(slot-die) 코팅 기술은 공기 중의 공정에서 용매 건조 시간이 길어 산소와 수분에 취약하다는 단점이 있었다.
이 교수 연구팀은 1미터 길이의 단일 유기 박막을 형성한 후 롤투롤 시스템을 이용해 유연 기판에 옮기는 데 성공했다. 자발적 순간 확산 공정을 통해 대량 생산이 가능하고, 수분과 산소에 취약한 유기소자 제작 공정의 시간과 복잡도를 낮출 수 있음을 증명했다.
이 교수는 “초고속으로 대면적의 유기 박막을 형성할 수 있는 유기 태양전지 상용화를 위한 완전히 새로운 공정이다”며 “저렴한 가격에 고효율의 유기 태양전지를 공급해 상용화를 앞당길 수 있는 원천기술이 될 것으로 기대한다”고 말했다.
이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 개발한 기술의 매커니즘을 3D 이미지로 묘사한 개념도
그림2. 개념도 및 제작된 유기 태양전지 성능 그래프
2016.08.23
조회수 17101
-
전상용 교수, 황달 유발 물질 이용해 암 표적치료 기술개발
우리 대학 생명과학과 전상용 교수, 이용현 박사 연구팀이 몸속에서 황달을 유발하는 물질인 빌리루빈을 항암약물 전달체로 이용하는 기술을 개발했다.
이 연구는 동물실험에서의 높은 생체적합성과 우수한 항암 효능을 보여 기존 암 치료법의 새로운 대안이 될 것으로 기대된다.
이번 연구 성과는 응용화학분야 학술지 ‘앙케반테 케미(Angewandte chemie)’의 에디터 선정 가장 주목받는 화제의 논문(Hot Paper)으로 선정돼 8월 3일자 온라인 판에 게재됐다.
약물전달시스템은 환부와 정상조직에서의 pH, 활성산소 등의 병태생리학적 차이를 분석해 빛, 자기장, 초음파 등 외부자극을 국소적으로 조사하는 방법이다. 이를 통해 효과적으로 선택적으로 표적에만 약물을 방출할 수 있다.
약물전달시스템은 기존 합성의약품 기반의 항암 치료제에 비해 독성을 크게 낮출 수 있기 때문에 자극감응성 약물전달체에 대한 개발이 활발하게 이뤄지고 있다.
하지만 고분자, 무기 나노입자같은 인공소재 기반의 자극감응성 약물전달체는 공정이 복잡해 상용화가 어렵고, 잠재적 독성을 유발할 가능성이 높다.
연구팀은 문제 해결을 위해 몸속 물질인 빌리루빈을 이용했다. 연구팀은 지난 5월 빌리루빈은 황달을 일으킬 수 있지만 적절하게 조절된다면 심혈관 질환이나 암 발병 가능성이 현저히 낮아져 난치성 염증을 치료할 수 있다는 연구결과를 발표했었다.
빌리루빈은 노란 색소로 혈중 농도가 높아지면 황달의 원인이 된다. 특히 신생아의 경우 간 기능이 미성숙하고 뇌혈관장벽이 미성숙하기 때문에 황달 치료를 위해 추가적 외부요법이 필요하다.
이것이 임상에서 널리 이용되는 광선치료인데 빌리루빈에 빛을 조사하면 친수성(親水性)이 강해져 빌리루빈 조직이 해체되고 배설이 촉진된다. 또한 빌리루빈은 강한 항산화작용 특성을 갖고 있어 빌리루빈이 산화될 때 친수성이 큰 빌리버딘이라는 물질로 전환되거나 작은 빌리루빈 산화물질로 깨져 역시 배설이 촉진된다.
연구팀은 위와 같은 빌리루빈의 특성을 이용했다. 우선 지난 5월의 연구를 토대로 빌리루빈의 배설이 잘 이뤄지도록 친수성을 갖는 물질과 결합시켜 나노입자로 만든 후 항암제인 독소루비신을(Doxorubicin) 선적시켰다.
그 후 암 부위에 빛을 노출시키면 빛에 의해 빌리루빈이 와해돼 선적된 항암제가 암 조직을 공격하는 원리이다.
연구팀은 이 시스템이 인간 폐암 동물모델에서 기존 항암치료 그룹에 비해 우수한 치료 효능을 보이는 것을 규명했다. 빛으로 암 부위를 국소적으로 조사했을 때 더 향상된 치료 효능이 나타났고, 운반체인 빌리루빈 나노입자 자체도 일정량의 항암효과를 나타냄을 확인했다.
이 기술은 최초로 빌리루빈을 활용한 항암치료용 다중자극감응형 약물전달시스템을 개발함으로써 원천기술 확보했다는 의의를 갖는다.
전 교수는 “물체 유래 천연 물질 빌리루빈을 사용해 독성이 없고 간단한 시스템으로 구성된 약물전달시스템을 개발해 상업화에 큰 장점을 가질 것이다”고 말했다.
이용현 박사는 “향후 임상 연구와 적용 가능성을 평가해 궁극적으로 암을 치료하는 새 방안으로 개발되길 기대한다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 빌리루빈 나노입자가 빛과 활성산소에 의하여 와해됨을 보여주는 결과
그림2. 인간 폐암 동물모델에서 약물이 로딩된 빌리루빈 나노입자가 실제 작용하는 모식도
2016.08.18
조회수 17677
-
유승협 교수, 열차단과 전기생산 동시에 가능한 태양전지 개발
〈 유 승 협 교수 〉
우리 대학 전기 및 전자공학부 유승협 교수와 성균관대 화학공학부 박남규 교수 공동 연구팀이 열을 차단하는 동시에 전기도 생산할 수 있는 반투명 태양전지 기술을 개발했다.
이는 다층 금속 박막 기반의 투명전극을 이용한 기술로써 가시광선은 투과하고 적외선(열선)은 선택적으로 반사한다. 동시에 전기도 생산하기 때문에 에너지를 효율적으로 사용하면서 낮은 실내 온도를 유지할 수 있다. 자동차 선팅이나 건물 창호 등에 다방면으로 이용 가능할 것으로 기대된다.
이번 연구 성과는 에너지 분야 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 20일자 표지 논문으로 선정됐다.(논문명: Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality)
태양전지는 지붕 위에 설치하는 청색의 사각 패널 뿐 아니라 건물이나 차량 유리창에 적용할 수 있는 반투명 모양으로도 발전될 수 있다.
하지만 빛을 흡수해 전기를 생산하는 태양전지의 속성 상 빛을 투과시키는 태양전지의 반투명한 특성은 효율을 감소시킬 수밖에 없다. 또한 기존의 상용화된 결정질 실리콘 기반의 태양전지는 반투명하게 제작이 어렵다는 한계를 갖는다.
연구팀은 문제 해결을 위해 차세대 태양전지 재료로 주목받는 유, 무기 복합물로 이뤄진 페로브스카이트를 광전변환 재료로 이용했다.
그리고 양면에 투명 전극을 사용해 반투명한 태양전지를 구현했다. 이 때 한쪽 면의 투명 전극은 연구팀이 수년 간 전자소자에 적용해온 ‘절연층-금속-절연층’ 구조의 금속 기반 다층 박막을 사용했다.
금속은 통상적으로 빛이 투과되기 어렵다. 하지만 연구팀은 수십 나노미터 두께의 얇은 박막으로 제작한 뒤 그 위에 반사를 줄이는 굴절률이 높은 절연층을 적층하는 방법으로 투명한 전극을 구현했다.
또한 투명 전극 각 층의 두께를 세밀하게 조절해 사람의 눈에 보이는 가시광선 대역의 빛은 투과시키고, 눈에 보이지 않는 대역의 빛은 반사되도록 설계했다. 이를 통해 차량용 선팅 필름과 비슷한 수준인 7.4% 평균 가시광선 투과율을 갖는 동시에 13.3%의 광전변환효율을 보이는 반투명 태양전지 제작에 성공했다.
연구팀은 적외선 반사를 최대화해 태양광의 열선을 효과적으로 반사시키는 기능을 더했다. 선팅 필름 제품의 태양열차단 성능은 총태양열에너지차단율(Total Solar Energy Rejection : TSER) 지수로 평가되는데 연구팀의 반투명 태양전지는 고가 선팅 필름 제품과 동등한 수준인 89.6%의 우수한 TSER 값을 보였다.
다수의 선팅 필름 제품들이 흡수를 통해 태양빛을 차단하기 때문에 태양빛에 노출 시 필름 자체의 온도가 올라간다. 반면 연구팀의 태양전지는 반사를 통해 열을 차단해 빛에 노출돼도 온도가 거의 올라가지 않아 태양전지의 안정성 향상 측면에서도 유리할 것으로 기대된다.
유 교수는 “열 차단 기능성 반투명 태양전지는 추가적 광학 설계를 통해 색 조절도 가능하고 궁극적으로는 필름형으로도 제작 가능해 기존 차량 및 건물의 유리창을 멋있고 스마트하게 업그레이드할 수 있을 것이다”며 “태양전지가 친환경 에너지를 생산하는 것에서 더 나아가 새로운 부가가치를 갖출 때 기존보다 더 큰 시장을 개척할 수 있을 것이다”고 말했다.
김호연, 하재원 박사과정 학생과 성균관대 김희선 학생이 공동으로 참여한 이번 연구는 KAIST 기후변화연구허브 사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 저널의 표지논문 그림
그림2. 태양전지 사진
그림3. 열화상 사진
그림4. 모식도
2016.08.01
조회수 16566
-
박병국 교수, 차세대 자성메모리의 성능 향상 기술 개발
〈 박 병 국 교수 〉
우리 대학 신소재공학과 박병국 교수와 고려대학교 이경진 교수 공동 연구팀이 차세대 자성메모리(MRAM)의 속도 및 집적도를 동시에 향상시키는 소재기술을 개발했다.
이번 연구결과는 나노기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 7월 11일자에 게재됐다.(논문명 : Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures)
자성메모리(MRAM)는 실리콘을 기반으로 한 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 새로운 비휘발성 메모리 소자이다. 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 고속 동작과 집적도를 높일 수 있다.
이러한 특성 때문에 메모리 패러다임을 바꿀 새로운 기술로 각광받고 있으며 전 세계 반도체 업체에서 개발 경쟁을 벌이고 있는 차세대 메모리이다.
개발 경쟁의 대상이 되는 핵심 기술 중 하나는 메모리 동작 속도를 더 높이면서도 고집적도를 동시에 구현 하는 기술이다. 현재까지 개발 된 자성메모리 기술에 의하면 동작 속도를 최고치로 유지하는 경우 집적도가 현저히 떨어지는 문제가 있었다.
연구팀은 문제 해결을 위해 동작 속도를 기존 자성메모리 기술보다 10배 이상 빠르고 고집적도를 달성 할 수 있는 새로운 기술을 개발했다.
일반적 스핀궤도토크 기반의 자성메모리는 정보기록을 위해 중금속-강자성 물질의 스핀궤도결합을 이용한다. 하지만 기존에 사용되는 백금(Pt) 또는 텅스텐(W)의 경우 외부 자기장을 걸어 주어야 하는 제약이 있었다.
연구팀은 이리듐-망간(IrMn) 합금과 같은 새로운 반강자성 소재를 도입해 반강자성-강자성 물질의 교환결합을 이용했고, 외부자기장 없이 빠르고 저전력 동작이 가능한 기술을 개발했다.
스핀궤도토크 자성메모리는 컴퓨터 또는 스마트폰에 쓰이는 정적 기억장치(SRAM) 보다 10배 이하로 전력소모를 낮출 수 있다. 또한 비휘발성 특성으로 저전력을 요구하는 모바일, 웨어러블, 사물인터넷 메모리로 활용가능성이 높다.
박 교수는 “이번 연구는 차세대 메모리로써 각광받고 있는 자성메모리의 구현 가능성을 한 걸음 더 발전시켰다는 의미를 갖는다”며 “추가 연구를 통해 기록성능이 뛰어난 신소재 개발에 주력할 예정이다”고 말했다.
이번 연구는 미래소재디스커버리사업 스핀궤도소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스핀궤도토크(SOT) 기반 자성메모리(MRAM)의 개략도
그림2. 스핀궤도토크에 의해 강자성 물질의 스핀 방향을 제어하는 소자개략도 및 주요 실험 결과
2016.07.14
조회수 14173
-
김세윤 교수, 뇌 신경세포 통신을 조절하는 물질 발견
〈 김 세 윤 교수 〉
우리 대학 생명과학과 김세윤 교수 연구팀이 이노시톨 7인산이 시냅토태그민을 통해 신경세포 통신을 강력히 조절할 수 있음을 규명했다.
이번 연구는 연세대학교 Y-IBS 과학원 윤태영 교수, 경희대 의과대학 김성현 교수 연구팀과 공동으로 진행됐고, 연구 결과는 미국국립과학원 회보(PNAS)지에 6월 30일 게재됐다.
총 4개국 6개의 연구팀들이 참가한 이번 연구는 신경세포 생물학부터 초해상도 광학 이미징까지를 망라하는 다학제 간 연구로 진행됐다.
곡류나 콩 등의 식물에 존재하는 이노시톨 다인산 대사체는 생체 내에 반드시 필요한 화합물이다. 그 중 하나인 이노시톨 6인산은 항암효능이 뛰어나 세포의 신호체계에서 중요한 역할을 하는 물질이다.
이노시톨 7인산은 이노시톨 6인산에 인산염이 하나 더 붙은 분자로 20여 년 전 처음 발견됐다. 특히 최근에는 이노시톨 7인산이 당뇨와 비만의 핵심적인 역할을 하는 것으로 밝혀졌다.
이노시톨 다인산 대사체가 생체 내에 불균형하게 존재할 때 정신질환 및 신경퇴행성질환이 야기되는 것으로 알려져 있다. 그러나 이노시톨 7인산이 뇌 신경세포와 신경전달에서 어떠한 역할을 수행하며 어떻게 작용하는지는 아직 명확히 밝혀지지 않았다.
이노시톨 다인산 대사체를 수년 간 연구한 김세윤 교수 연구팀은 이노시톨 7인산이 매우 소량으로 존재할 때에도 세포 신호전달을 조절할 수 있는 강력한 물질임을 밝혔다. 연세대 윤태영 교수 연구팀과의 공동연구를 통해 합성된 이노시톨 7인산이 신경전달 재현 시스템에서 이노시톨 6인산보다 수십 배 강한 효과로 신경세포 통신을 억제하는 것을 관찰했다.
특히 이노시톨 7인산이 신경전달을 위한 핵심 단백질 중에 하나인 시냅토태그민을 직접 억제함으로써 신경세포 통신을 저해하는 것을 증명했다.
경희대학교 김성현 교수 연구팀은 이노시톨 7인산이 실제 뇌 해마 신경세포에서 신경세포 전달을 저해한다는 것을 관찰했다. 이로써 공동연구팀은 이노시톨 다인산 대사체가 뇌 신경전달의 핵심 스위치라는 것을 입증했다.
이번 연구결과는 우리 대학 뿐 아니라 연세대학교 Y-IBS 과학원, 경희대, 성균관대, KIST, 취리히대학, 프라이부르크 대학(독일)에 이르기까지 다자간의 공동연구를 통해 각 분야의 전문 과학기술을 조합해 얻은 결과이다.
향후 시냅토태그민과 이노시톨 7인산과의 밀접한 관계를 통해 신경세포 신호전달의 기작을 밝히고 신경질환에 대한 연구에 이바지 할 것으로 기대된다.
이번 연구는 IBS 나노의학연구단, 미래창조과학부 뇌과학원천기술개발사업의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. 5-IP7 이노시톨 대사체에 의한 신경전달 신호전달 기전 모식도
그림2. 이노시톨 다인산 대사체
2016.07.06
조회수 14994
-
강정구, 김용훈 교수, 초고속 충전 가능한 리튬이온 배터리 소재 개발
우리 대학 EEWS 대학원 강정구, 김용훈 교수 공동 연구팀이 빠른 속도의 충, 방전이 가능한 동시에 1만 번 이상의 작동에도 용량 손실이 없는 리튬 이온 배터리 음극 소재를 개발했다.
이번 연구는 3차원 그물 형상의 그래핀과 6나노미터 크기의 이산화티타늄 나노입자로 구성된 복합 구조체를 간편한 공정으로 제조하는 기술이다.
이를 통해 탄소계열 물질 위주의 기존 전극이 갖고 있던 고출력 성능이 제한되는 문제를 개선해 고성능의 배터리 전극을 구현했다. 향후 전기자동차, 휴대용 기기 등 높은 출력과 긴 수명을 요구하는 분야에 응용 가능할 것으로 기대된다.
이규헌 박사과정, 이정우, 최지일 박사가 주도한 이번 연구 결과는 국제 과학 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 지난 5월 18일자 온라인 판에 게재됐다.
현재 음극 배터리 물질로는 그래핀이 가장 많이 사용된다. 이 그래핀을 쉽게 만드는 방법은 용액 상에서 흑연을 분리시키는 방법인데 이 과정에서 결함 및 표면의 불순물이 발생해 전기 전도성을 높이는데 방해가 된다.
연구팀은 문제 해결을 위해 화학기상증착법을 이용해 기존의 평평한 형태가 아닌 결함이 적고 물성이 우수한 3차원 그물 형상의 그래핀을 제조했다. 그 위에 메조 기공이 형성된 이산화티타늄 나노입자 박막을 입혀 복합 구조체를 구현했다.
이 기술로 일반적인 전극 구성물질인 유기 접착제와 전도성 재료를 사용하지 않음으로써 전극 제조 공정을 간소화했고 전기 전도성을 높였다.
또한 3차원 그물 형상의 그래핀과 화학적으로 안정된 이산화티타늄 나노입자가 형성하는 다양한 크기의 기공들이 전해질의 접근성을 높이는 역할을 한다. 이를 통해 이온들의 접근을 촉진시키고 원활한 전자의 이동이 가능하게 한다.
이 기술은 크기가 작은 나노 입자를 사용하기 때문에 표면부터 중심까지의 거리가 짧다. 따라서 짧은 시간 내에 결정 전체에 리튬을 삽입할 수 있어 빠른 충, 방전 속도에서도 효율적인 에너지 저장이 가능하다.
연구팀은 1분 이내에 130mAh/g의 용량을 완전히 충, 방전하는데 성공했고, 이 과정에서 용량 손실 없이 1만 번 이상 작동함을 확인했다.
연구팀은 “재료의 물성을 극대화시킬 수 있는 구조적 설계를 통해 기존 이차전지의 문제점을 해결하고 성능을 효과적으로 높이는 방법을 제시했다”고 밝혔다.
강 교수는 “재료 물리학 측면에서 가치가 높은 연구 결과이다”며 “구조적 측면에서도 향후 여러 에너지 저장장치 등의 분야에 활용 가능성이 클 것이다”고 말했다.
이 연구는 미래창조과학부의 글로벌프론티어사업, 한국연구재단의 도약사업과 KISTI 슈퍼컴퓨팅의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 그물 형상의 그래핀위에 증착된 메조기공을 형성하는 이산화 티타늄 박막 복합 구조체의 모식도
그림2. 리튬이 삽입된 구조분석
그림3. 바인더 없이 제조된 고출력고수명 특성
2016.06.20
조회수 15483
-
강정구, 김용훈 교수, 태양광 이용 이산화탄소로 메탄올 변환 성공
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다.
이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다.
이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다.
매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다.
경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다.
식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다.
하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다.
연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다.
이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다.
또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다.
이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다.
연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다.
강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다.
이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정
그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
2016.05.26
조회수 17805
-
전상용 교수, 몸 속 물질 이용한 염증 치료제 개발
〈 전 상 용 교수 〉
우리 대학 생명과학과 전상용 교수 연구팀(1저자 이용현 박사)이 신체 내부의 항산화물질을 이용한 새로운 항염증 나노의약품을 개발했다.
빌리루빈이라 불리는 생리활성물질 기반 100나노미터 크기의 나노입자로 이뤄진 이 약품은 만성 및 급성 난치성 염증질환 치료에 쓰일 것으로 기대된다.
이번 연구는 화학분야 저명학술지 ‘앙게반테 케미(Angewandte Chemie international Edition)’ 5월 4일자 온라인 판에 게재됐다.
고분자, 무기 나노입자 등의 많은 나노소재들이 질병 진단 및 치료용 나노의약품으로 개발되고 있다. 그러나 대부분의 약품들은 인공소재로 이뤄져 생분해성 및 생체적합성이 낮다. 이러한 약품들이 신체에 장기간 남을 경우 잠재적인 독성을 유발할 가능성이 있어 실제 임상적용이 되는 예는 소수에 불과하다.
연구팀은 문제 해결을 위해 이미 우리 몸속에 존재하는 항산화 및 면역조절 물질인 빌리루빈을 이용했다. 빌리루빈은 헤모글로빈에 존재하는 산소결합 물질인 헴(Heme)의 최종 대사체이다.
빌리루빈은 노란색 담즙 색소로서 혈중 농도가 높아지면 황달의 원인이 돼 예전에는 쓸데없는 물질로 여겨졌다. 하지만 근래 발표된 역학조사에 따르면 빌리루빈의 혈중 농도가 다소 높으면 심혈관 질환이나 암 발병 가능성이 현저히 낮아진다는 사실이 밝혀졌다.
또한 빌리루빈은 여러 활성산소들을 제거하고 염증과 관련된 면역세포를 조절하는 등의 기능을 해 세포와 조직을 보호한다는 사실이 동물 실험을 통해 확인됐다.
그러나 물에 거의 녹지 않는 특성 때문에 빌리루빈을 실제 치료에 적용하지 못했다. 전 교수 연구팀은 빌리루빈에 초 친수성 고분자인 폴리에틸렌글리콜(PEG)을 결합한 ‘페길화된 빌리루빈’을 합성해 수용액에서 자가 조립돼 약 100나노미터 직경을 갖는 빌리루빈 나노입자로 재탄생시켰다.
이 빌리루빈 나노입자는 항산화 및 항염증 효능을 그대로 유지하면서 신체에 축적되지 않고 배설돼 빌리루빈의 장점만 갖는 나노의약품이 됐다.
효능 확인을 위해 대표적 난치성 만성 염증 질병인 대장염 모델을 쥐에게 투여한 후 빌리루빈 나노입자를 투여했다. 염증이 형성된 부위에 나노입자가 선택적으로 분포됐고 대장염 진행을 효과적으로 차단했다.
또한 장 길이가 짧아지고 혈변 등의 부작용이 생기는 대조군과 다르게 정상 생쥐와 비슷한 수준으로 회복됐고, 황달 등의 부작용이 발생하지 않아 높은 수준의 항염증 효과를 확인했다.
연구팀은 빌리루빈 나노입자가 대장염 모델 외에도 허혈성 간질환, 천식, 췌장소도세포 이식 동물 모델에서 우수한 효과를 보여 향후 범용 항염증 나노의약품이 될 수 있을 것으로 기대된다고 밝혔다.
연구팀은 “빌리루빈 나노입자는 우리 몸속에 존재하는 생리활성물질과 친수성 고분자가 접합된 간단한 화학물질로 구성됐다”며 “생분해성 및 생체적합성이 높고 대량 생산이 가능해 바로 임상 적용이 가능하다”고 말했다.
전 교수는 “향후 국내외 연구진들과 전임상 및 임상실험을 수행할 예정이다”며 “적절한 치료제가 없는 난치성 염증질환을 치료할 수 있는 새로운 나노의약품을 개발해 환자들의 고통을 덜어주고 싶다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실 및 KAIST 시스템헬스케어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 형광물질 ICG가 로딩된 빌리루빈 나노입자가 염증조직(대장, Colon)으로 선택적으로 축적됨
그림2. 빌리루빈과 폴리에틸렌 글리콜의 축합방법 및 제조된 빌리루빈 기반 나노입자의 모식도
그림3. 고용량의 빌리루빈 나노의약품이 정맥주사되었을 때, 부작용이 없음을 나타내는 결과
그림4. 빌리루빈 나노입자를 처리한 염증그룹에서는 정상그룹과 비슷해진 대장을 관찰가능
2016.05.19
조회수 15992
-
김순태 교수, 무선인터넷 시뮬레이션 기술 모파이심(MofySim) 개발
〈 김 순 태 교수 〉
스마트폰 사용자의 75%가 하루 1회 이상 인터넷 검색, 사회연결망서비스(SNS) 관련 서비스를 이용할 만큼 무선 네트워크는 모바일 기기에서 가장 핵심적인 요소이다.
무선 네트워크에서는 상황에 따라 패킷 손실, 손상 등의 오류가 발생할 수 있고 이것이 배터리 소모의 원인이 된다. 따라서 모바일 기기를 설계할 때 네트워크 상황에 따라 기기의 성능 및 소비 에너지 등을 고려해야 한다.
우리 대학 전산학부 김순태 교수 연구팀은 스마트폰, 컴퓨터 등에서 사용되는 무선 인터넷 환경을 컴퓨터 시뮬레이션을 통해 미리 구현할 수 있는 시뮬레이션 플랫폼 모파이심(MofySim)을 개발했다.
이를 통해 스마트폰의 인터넷 환경과 비슷하게 시뮬레이션을 수행할 수 있어 하드웨어, 소프트웨어의 문제점과 개선 사항을 쉽게 파악 수 있다.
실제 시스템에서는 추출하기 어려운 하드웨어 상에서 발생하는 다양한 현상 및 시스템 소프트웨어의 활동 상황, 네트워크 상황에 따라 생기는 하드웨어와 소프트웨어의 문제점을 찾을 수 있다는 점이다. 이를 통해 모바일 시스템의 성능, 전력소비, 신뢰성을 측정할 수 있다.
이번 성과는 4월 19일 스웨덴 웁살라에서 열린 ISPASS(International Symposium on Performance Analysis of Systems and Software)학회에서 발표됐다.
기존 시뮬레이션 시스템은 통신을 통한 인터넷 연결을 완벽히 지원하지 못하고 로컬(local) 디스크에서 데이터를 읽는 형태로 지원했다. 즉, 로컬 디스크에 있는 오프라인 상의 자료만을 토대로 웹 서핑을 시뮬레이션 하는 제한된 환경 때문에 네트워크의 변동성을 반영하지 못하고 이는 신뢰도 하락으로 이어진다.
모파이심은 문제 해결을 할 수 있도록 3G, 4G, 와이파이 등 무선통신 네트워크와 통신 대역폭(bandwidth), 패킷(packet) 분실, 지연시간 등 발생 가능한 네트워크 상황을 모델링하는 모바일 시스템 시뮬레이션을 지원한다.
실제 모바일 시스템에서 무선통신으로 인터넷에 접속해 웹 서핑을 하는 것과 동일한 효과를 시뮬레이션 상에서도 구현할 수 있다.
모파이심은 모바일 시스템, 서버 시스템, 두 시스템부를 연결하는 무선 통신부로 구성된다. 모바실 시스템부는 CPU, 메모리, 저장장치, 디스플레이 등의 하드웨어를 모델링하고, 리눅스 운영체제와 안드로이드 시스템을 구동한다.
서버 시스템부는 모바일 시스템이 접속하는 인터넷에 연결된 원격 서버를 모델링한다. 마지막으로 무선 통신부는 두 시스템을 무선 통신을 통해 연결하는 모파이심의 핵심이다.
연구팀은 모파이심이 교육 분야에서도 활용이 가능해 관련 분야 교육 수준을 향상시키는 데 기여할 것으로 예상했다.
김 교수는 “모파이심을 이용해 현재 뿐 아니라 미래의 모바일 시스템 모델링이 가능해진다”며 “하드웨어가 개발되지 않은 상황에서 미래 시스템을 실험할 수 있는 유용한 플랫폼이 될 것이다”고 말했다.
이 시스템은 홈페이지(http://ecl.kaist.ac.kr/tools)에서 등록 후 무료 다운로드할 수 있다.
전산학부 김형규 박사과정과 삼성전자 소프트웨어센터 주민호 책임연구원의 참여로 이뤄진 이번 연구는 한국연구재단 중견연구자지원사업과 정보통신기술진흥센터 SW컴퓨팅산업원천기술개발사업의 지원을 받아 수행됐다.
ㅁ 그림 설명
그림1. 모파이심 시스템 시뮬레이션 플랫폼 구조도
2016.05.16
조회수 12643