< (왼쪽부터) 신소재공학과 김경민 교수, 이학승 박사과정 >
우리 대학 신소재공학과 김경민 교수 연구팀이 산화나이오븀(NbO2) 의 확률적 금속-절연체 전이 현상을 이용한 차세대 확률론적 컴퓨팅의 핵심 반도체 소자를 개발했다고 23일 밝혔다.
최근 IoT (Internet of Things), 자율주행, 빅데이터, 인공지능으로 대표되는 초연결시대가 진행됨에 따라 다양한 제한 조건과 구성 요소들이 상호작용하는 상황에서 최적의 해결책을 신속하게 찾아내는 '조합최적화 문제’의 해결이 중요한 과제로 부상하고 있다. 예를 들면, 네비게이션에 활용되는 최적 경로 탐색과 같은 문제가 조합최적화 문제에 해당한다. 조합최적화 문제는 복잡도가 증가함에 따라 해답을 찾기가 급격히 어려워지는 특성을 갖기에, 이를 효과적으로 해결할 수 있는 신개념 컴퓨팅 기술이 요구된다. 양자컴퓨팅은 그 대표적인 예시이지만 간섭, 오류 수정, 안정성 등의 이유로 양자 컴퓨팅의 상용화에는 여전히 많은 어려움이 남아 있다.
확률론적 컴퓨터의 기본 소자는 피비트* (pbit)라고 불리는데, 확률론적 컴퓨터는 피비트의 확률적 특성을 이용한다는 점에서 양자컴퓨터와 유사하지만, 기존 반도체 기술로 제작이 가능하여 상용화 측면에서 보다 현실적인 기술이다.
*피비트: Probabilistic bit의 줄임 말로 기존 디지털 시스템에서 사용하는 0, 1의 비트 정보를 출력하지만 각 상태 출력이 고정적이지 않고 확률적인 기본 소자
< 그림 1. 산화나이오븀 기반 피비트의 구조와 피비트의 전류진동을 통해 관측한 실험 결과 >
김경민 교수 연구팀은 산화나이오븀 (NbO2) 재료가 갖는 금속-절연체 전이 현상이 특정 조건에서 확률적으로 발생할 수 있음을 최초로 발견하였으며, 이를 활용해 확률론적 컴퓨팅을 위한 피비트의 제작에 성공하였다. 연구팀에서 개발한 피비트는 비트 당 평균 128pJ의 에너지, 260ns의 속도로 비트를 발생시키며, 이는 기존 저항변화메모리 기반 피비트 기술에 비해 약 20% 에너지 소모가 적으며, 약 4천 배 빠르다.
이에 더하여, 해당 반도체 피비트를 기반으로 하는 확률론적 컴퓨팅 시스템을 설계하였으며, 실제로 조합최적화 문제를 해결하는 사례를 통해 개발한 소자의 실질적인 활용에 대한 가능성을 입증했다.
김경민 교수는 “확률적 신호를 기존 CMOS 기반 회로를 통해 발생시키기 위해서는 매우 복잡한 구조가 요구되는데, 이번 연구는 모트 전이라고 하는 금속-절연체 전이 현상을 통해 확률적 신호를 직접 출력하는 단일 반도체 소자를 구현했다는 점에 큰 의의가 있다”며 “이 기술은 기존 반도체 기술과 융합될 수 있어 양자컴퓨팅의 기능을 수행할 수 있는 현실적인 대안이 될 것”이라고 말했다.
< 그림 2. 개발한 산화나이오븀 기반 확률론적 컴퓨팅 시스템 구성도 및 최소 정점 커버 (Max Vertex Cover) 예시 문제 및 해결 결과 >
이번 연구는 신소재공학과 이학승 박사과정 학생이 제1 저자로 참여했으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications, IF: 16.6)’에 11월 8일 字 게재됐으며 한국연구재단 PIM인공지능반도체 사업, 나노종합기술원, 그리고 KAIST의 지원을 받아 수행됐다.
논문명: Probabilistic computing with NbOx metal-insulator transition-based self-oscillatory pbit, 논문링크: https://doi.org/10.1038/s41467-023-43085-6
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다. 물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다. 200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다. 이에 연구팀은‘홀로토모그래피(Holotomograp
2025-05-26우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다. 다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다. 그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분
2025-04-01브릴루앙 레이저(Brillouin laser)는 물질 내 빛과 음파의 상호작용을 통해 매우 안정적이고 잡음이 적은 레이저 빛을 만들어 내는 광원이다. 그동안 이 기술은 가시광선이나 근적외선 영역에서만 구현되었으며, 중적외선 영역에서는 기술 부족으로 구현이 어려웠다. 국제 공동 연구진이 초소형 저잡음 브릴루앙 레이저를 해당 파장 영역에서 세계 최초 개발하여 더욱 정밀한 분자물리·화학 연구 및 다양한 차세대 응용 기술의 기반을 마련하였다. 우리 대학 물리학과 이한석 교수 연구팀이 호주국립대 최덕용 교수, 예일대 피터 라키치 교수, 한국원자력연구원 고광훈 박사, 닝보대학교 롱핑 왕 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다고 31일 밝혔다. 칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에
2025-03-31최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다. 흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(H
2025-03-10나무뿌리가 흙에 단단히 고정되는 구조를 모방해, 한국 연구진이 최대 700%까지 늘어나는 신축성을 확보하고 스트레처블 전자 제품의 상용화를 위한 새로운 기준을 제시했다. 특히 스마트 저항 밴드와 스트레처블 LED 디스플레이, 태양 전지와 같은 응용 사례를 통해 기술의 폭넓은 적용 가능성을 입증했다. 우리 대학 기계공학과 박인규 교수 연구팀이 한국전자통신연구원(ETRI)과 공동연구를 통해 스트레처블 전자 제품 개발에서 기존의 한계를 극복한 혁신적인 기술인 ‘생체 모사 인터페이스 설계(Bioinspired Interfacial Engineered Flexible Island, 이하 BIEFI)’를 개발했다고 6일 밝혔다. 이번 연구는 생체 모사 인터페이스 설계를 기반으로, 전자 제품의 유연성, 신축성과 기계적 내구성을 동시에 극대화하는 데 성공했다. 연구진은 주 뿌리(primary roots)와 보조 뿌리(secondary roots) 구조를 설계에
2025-03-06