< 전산학부 안성진 교수 >
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스 대학교와 협력하여 트랜스포머 및 재귀신경망 기반의 월드모델을 대체할 차세대 에이전트 월드모델 기술을 세계 최초로 개발했다.
월드모델은 인간의 뇌가 현실 세계의 경험을 바탕으로 환경 모델을 구축하는 과정과 유사하다. 이러한 월드모델을 활용하는 인공지능은 특정 행동의 결과를 미리 시뮬레이션해보고 다양한 가설을 검증할 수 있어, 범용 인공지능의 핵심 구성 요소로 여겨진다.
특히, 로봇이나 자율주행 차량과 같은 인공지능 에이전트는 학습을 위해 여러 가지 행동을 시도해 보아야하는데, 이는 위험성과 고장 가능성을 높인다는 단점을 갖는다. 이에 반해, 월드모델을 갖춘 인공지능은 실세계 상호작용 없이도 상상모델 속에서 학습을 가능케 해 큰 이점을 제공한다.
그러나 월드모델은 자연어처리 등에서 큰 발전을 가능하게 한 트랜스포머와 S4와 같은 새로운 시퀀스 모델링 아키텍처의 적용에 한계가 있었다. 이로 인해, 대부분의 월드모델이 성능과 효율성 면에서 제약이 있는 고전적인 재귀적 신경망에 의존하고 있었고 안성진 교수팀은 작년 세계최초로 트랜스포머 기반의 월드모델을 개발하였으나 추론 계산속도나 메모리능력에서 여전히 개선할 문제를 갖고 있었다.
< 그림 1. 안성진 교수팀이 개발한 S4WM(네번째 열)은 실제(첫번째 열)와 매우 유사한 미래 예측 능력을 제공하는 반면, 기존 재귀적 신경망 기반의 월드모델(두번째 열)이나 트랜스포머에 기반한 월드모델(세번째 열)은 큰 오차를 보인다. >
이러한 문제를 해결하기 위해, 안성진 교수가 이끄는 KAIST와 럿거스 대학교 공동연구팀은 재귀적 신경망과 트랜스포머 기반 월드모델의 단점을 극복한 새로운 월드모델의 개발에 성공했다. 연구팀은 S4 시퀀스 모델에 기반한 S4 World Model (S4WM)을 개발하여, 재귀적 신경망의 최대 단점인 병렬처리가 가능한 시퀀스 학습이 불가능하다는 문제를 해결하였다. 또한, 재귀적 신경망의 장점인 빠른 추론시간을 유지하도록 하여 느린 추론 시간을 제공하는 트랜스포머 기반 월드모델의 단점을 극복했다.
연구를 주도한 안성진 교수는 "병렬 학습과 빠른 추론이 가능한 에이전트 월드모델을 세계 최초로 개발했다ˮ며, 이는 "모델기반 강화학습 능력을 획기적으로 개선해 지능형 로봇, 자율주행 차량, 그리고 자율형 인공지능 에이전트 기술 전반에 비용절감과 성능 향상이 예상된다ˮ고 밝혔다.
이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 세계 최고 수준의 인공지능 학회인 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다.
관련논문: “Facing off World Model Backbones: RNNs, Transformers, and S4”Fei Deng, Junyeong Park, Sungjin Ahn, NeurIPS 23, https://arxiv.org/abs/2307.02064
“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05우리 대학 인공지능반도체대학원은 27일(화) 오전 대전 오노마 호텔에서 ‘제3회 한국인공지능시스템포럼(KAISF)’ 조찬 강연회를 성공적으로 개최하였다. 이번 강연회는 ‘휴머노이드 로봇의 혁명: 인간과 로봇의 공존 시대’를 주제로, 인공지능(AI)과 로봇 기술의 융합이라는 최신 이슈에 대한 깊이 있는 통찰을 제공하는 자리로 마련되었다. 총 60명의 산학 전문가가 참석한 가운데, LG전자 백승민 소장의 초청 강연은 현장 참석자들의 높은 관심과 호응을 이끌어냈다. 백승민 LG전자 소장은 이날 강연에서 AI 기술을 활용한 생활형 로봇의 진화, 생성형 AI를 접목한 자율지능 향상 사례, 그리고 로봇 플랫폼의 통합 가속화 전략 등을 중심으로 발표했다. 특히 인간과 자연스럽게 상호작용하는 휴머노이드 로봇의 서비스화 실증사례는 산업계 리더들에게 실질적인 인사이트를 제공하였다. 이어 “AI 기술은 이제 실제 로봇의 형태로 현실 공간
2025-05-27인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다. 연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링
2025-05-27음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다. KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다. 이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해
2025-05-07우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18