< (왼쪽부터) 생명화학공학과 김지한 교수, 강영훈 박사과정, 박현수 박사과정 >
다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다.
김지한 교수 연구팀은 챗GPT(ChatGPT)에서 사용된 모델인 트랜스포머를 다공성 소재에 도입해 모든 성능을 예측할 수 있는 멀티모달 인공 신경망을 개발했다. 멀티모달은 사진(이미지)과 설명(자연어)같이 서로 다른 형태의 데이터를 함께 학습하며, 이는 인간과 비슷하게 입체적이고 종합적인 사고를 할 수 있도록 도와준다. 연구팀이 개발한 멀티모달 트랜스포머 (MOFTransformer)는 원자 단위의 정보를 그래프로 표현하고, 결정성 단위의 정보를 3차원 그림으로 전환 후 함께 학습하는 방식으로 개발했다. 이는 다공성 소재의 물성 예측의 한계점이었던 다양한 물성에 대한 전이 학습을 극복하고 모든 물성에서 높은 성능으로 물성을 예측할 수 있게 했다.
< 그림 1. 멀티모달 트랜스포머를 이용한 범용적 물성 예측 개요 >
김지한 교수 연구팀은 다공성 소재를 위한 트랜스포머를 개발해 1백만 개의 다공성 소재로 사전학습을 진행했으며, 다공성 소재의 가스 흡착, 기체 확산, 전기적 특성 등의 다양한 소재의 물성을 기존의 발표된 머신러닝 모델들보다 모두 더 높은 성능으로 (최대 28% 상승) 예측하는 데 성공했고, 또한 논문으로부터 추출된 텍스트 데이터에서도 역시 높은 성능으로 예측하는 데 성공했다.
연구팀이 개발한 기술은 물질의 특성을 계산 및 예측하는 새로운 방법론을 제시했으며, 이를 통해 소재 분야에서 새로운 소재의 설계와 개발에 도움이 될 뿐만 아니라, 기존의 소재에 대한 깊은 이해를 얻을 수 있을 것으로 기대된다. 더불어, 멀티모달 트랜스포머는 다공성 소재뿐만 아니라 다른 종류의 소재에도 확장 가능한 범용적인 모델이므로, 인공지능을 통한 소재 과학의 발전에 크게 이바지할 수 있을 것이다.
< 그림 2. 멀티모달 트랜스포머의 모델 구조 및 입력 데이터 개요 >
생명화학공학과 강영훈, 박현수 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 3월 13일에 게재됐다. (논문명: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05우리 대학 인공지능반도체대학원은 27일(화) 오전 대전 오노마 호텔에서 ‘제3회 한국인공지능시스템포럼(KAISF)’ 조찬 강연회를 성공적으로 개최하였다. 이번 강연회는 ‘휴머노이드 로봇의 혁명: 인간과 로봇의 공존 시대’를 주제로, 인공지능(AI)과 로봇 기술의 융합이라는 최신 이슈에 대한 깊이 있는 통찰을 제공하는 자리로 마련되었다. 총 60명의 산학 전문가가 참석한 가운데, LG전자 백승민 소장의 초청 강연은 현장 참석자들의 높은 관심과 호응을 이끌어냈다. 백승민 LG전자 소장은 이날 강연에서 AI 기술을 활용한 생활형 로봇의 진화, 생성형 AI를 접목한 자율지능 향상 사례, 그리고 로봇 플랫폼의 통합 가속화 전략 등을 중심으로 발표했다. 특히 인간과 자연스럽게 상호작용하는 휴머노이드 로봇의 서비스화 실증사례는 산업계 리더들에게 실질적인 인사이트를 제공하였다. 이어 “AI 기술은 이제 실제 로봇의 형태로 현실 공간
2025-05-27인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다. 연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링
2025-05-27음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다. KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다. 이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해
2025-05-07우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18