-
무선 충전 가능한 부드러운 뇌 이식 장치 개발
우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다.
이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics)
광유전학은 빛을 이용해 목표로 하는 특정 신경세포만을 선택적으로 정교하게 제어할 수 있다는 점에서, 뇌 기능을 밝히고 각종 뇌 질환을 치료할 해결책으로 뇌과학 및 신경과학 분야에서 주목받고 있다.
기존의 광유전학은 외부기기와 연결된 광섬유를 통해 신경세포에 빛을 전달하는 방법을 사용하고 있는데, 이러한 유선 방식은 동물의 자유로운 움직임을 크게 제한한다는 점에서 복잡한 동물 실험을 구현하는데 제약이 있다. 반면 최근에 개발된 무선 임플란트 기기들은 동물의 행동을 제약하지는 않지만, 주기적인 배터리의 교체가 필요하거나 외부 장비로부터 무선으로 전력을 공급받아야 하므로 독립적이지 못하고 동작이 안정적이지 못하다는 한계가 있다.
연구팀은 배터리의 무선 충전과 디바이스의 무선 제어를 가능하게 만드는 무선 회로를 개발해 마이크로 LED 기반의 탐침과 결합했다. 이를 통해 동물이 자유롭게 움직이는 상태에서도 배터리의 무선 충전이 가능하고, 스마트폰 앱을 통해 광자극을 무선으로 제어할 수 있는 무게 1.4그램(g)의 뇌 완전이식형 기기를 구현했다. 나아가 생체 이식 후 기기에 의해 주변의 조직이 손상되는 것을 방지하고자, 기기를 매우 부드러운 생체적합성 소재로 감싸 생체조직과 같이 부드러운 형태가 되도록 개발했다.
이번 연구를 주도한 정재웅 교수는 "개발된 장치는 체내 이식 상태에서 무선 충전이 가능하므로 배터리 교체를 위한 추가적인 수술 필요 없이 장기간 사용이 가능하다ˮ며 "이 기술은 뇌 이식용 기기뿐 아니라 인공 심박동기, 위 자극기 등 다양한 생체 이식용 기기에 범용적으로 적용될 수 있을 것이다ˮ고 말했다.
연구팀은 이 기기를 LED 탐침이 쥐의 뇌에 삽입된 상태에서 두피 안으로 완전히 이식하고 쥐가 자유롭게 움직이는 상태에서 배터리가 자동으로 무선 충전될 수 있음을 확인했다. 또한 연구팀은 중독성 약물인 코카인에 반복적으로 노출된 쥐의 특정 뇌 부위에 무선으로 빛을 전달해 코카인으로 인한 행동 민감화 발현을 억제함으로써 광유전학이 코카인에 의한 중독 행동 제어에 적용될 수 있음을 보였다.
아울러 공동연구자 연세대 의대 김정훈 교수는 "자유롭게 움직이는 동물을 바라보며, 단지 스마트폰 앱을 구동해 뇌에 빛을 전달하고, 그로 인해 동물의 특정 행동을 제어할 수 있다는 사실이 매우 흥미롭고, 많은 상상력을 자극한다ˮ라고 말했다.
연구팀은 이 기술을 궁극적으로 인체에 적용할 수 있도록 기기를 더욱 소형화하고 MRI 친화적인 디자인으로 발전시키는 확장 연구를 계획하고 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 지원사업과 신진연구자지원사업, KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
2021.01.26
조회수 78035
-
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다.
* 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임
** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌
알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다.
알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다.
조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다.
* 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포
또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다.
이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다.
조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다.
이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다.
(https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 73571
-
신경 네트워크의 연결을 실시간으로 조절 가능한 신경 칩 플랫폼 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 나노입자 기술을 기반으로 시험관 조건에서 배양한 신경 네트워크의 연결을 실시간으로 조절할 수 있는 신경칩 플랫폼을 개발했다고 7일 밝혔다.
이번 연구는 신경 네트워크의 구조를 조절하기 위한 기존의 많은 세포 형태화 기술이 세포 배양 이전 단계에만 적용 가능한 데 반해, 네트워크의 발달 및 성숙 단계에서도 도입할 수 있다는 점에서 큰 의미가 있다.
바이오및뇌공학과 홍나리 박사과정(지도교수:남윤기)이 주도한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 12월 9일 字에 게재됐다. (논문명: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro)
우리 뇌의 복잡한 구조를 모방하는 신경 네트워크 모델을 체외 조건에서 구현하기 위해서는 신경세포의 위치와 연결을 원하는 구조에 맞춰 정렬하는 기술이 필요하며, 이를 위해 다양한 방식의 미세공정 기법을 통한 신경세포 형태화 기술이 개발돼왔다.
그러나 이러한 기술들은 세포를 배양하기 전에 배양기판의 표면을 개질하는 방법을 기반으로 하고 있어 배양 초기 단계에서 원하는 네트워크의 구조를 통제하는 것은 가능하나, 이후 수일 또는 수 주에 걸친 세포 간 네트워크 형성 과정 중에 네트워크 연결을 조절하는 것이 매우 어렵다는 단점이 있었다.
연구진은 세포 배양 중에도 신경 네트워크의 구조와 기능을 실시간으로 조절할 수 있는 기술을 개발하기 위해, `아가로즈 하이드로겔 (agarose hydrogel), 금 나노막대, 미세 전극 칩' 기반의 신경 칩 플랫폼을 제작했다. 해초로부터 추출한 물질로 조직공학 분야에서 활용되고 있는 아가로즈 하이드로겔은 신경세포의 흡착을 방해하는 세포 반발성을 가지고 있어, 배양기판 상에 다양한 형태의 패턴을 제작해 이 물질이 없는 영역에만 한정적으로 신경 네트워크를 형성시킬 수 있다.
또한 아가로즈 하이드로겔은 열에 의해 녹는 특성이 있어, 국소적인 열을 통해 특정한 위치의 하이드로겔을 제거할 수 있다. 연구진은 원하는 영역에만 국소적 열을 발생시키기 위한 매개체로 금 나노막대를 사용했다. 금 나노막대는 근적외선을 선택적으로 흡수해 열을 발생시킬 수 있는 광열 특성이 있다. 마지막으로 미세 전극 칩은 신경세포의 전기적 신호를 비침습적으로 장기간 측정한다.
연구진은 배양기판인 미세 전극 칩 위에 금 나노막대 층을 형성하고, 그 위에 미세 패턴을 지닌 아가로즈 하이드로겔 층을 제작함으로써, 각 미세 패턴 안에 독립된 신경 네트워크들을 구축했다. 다음으로 개발된 플랫폼을 통해 세 가지의 다른 조작 방식으로 신경 네트워크의 구조와 기능을 조절할 수 있음을 실험적으로 확인했다.
첫 번째로는, 금 나노막대 층에서 발생하는 열을 통해 네트워크 사이에 하이드로겔을 국소적으로 제거했으며, 제거된 영역을 따라 신경돌기(축삭)가 생장해 새로운 신경 연결이 생성됨을 확인했다. 두 번째로는, 네트워크를 연결하고 있는 신경돌기에 직접 열을 가함으로써 원하는 신경 연결을 선택적으로 제거할 수 있음을 관찰했다. 이러한 신경 연결의 생성과 제거 기술을 미세 전극 칩 상에서 실행함으로써, 연구팀은 네트워크의 구조적 변화에 의한 기능적 연결성을 분석할 수 있었다. 세 번째로는, 광열 자극을 이용한 신경 활성 억제 현상을 이용해 개별 네트워크의 활성 변화를 조절하면서 서로 연결된 네트워크 간의 기능적 연결성을 대응시킬 수 있음을 확인했다.
이번 연구의 교신저자인 남윤기 교수는 "이번 연구에서 개발된 신경 세포 칩 플랫폼은 신경회로의 구조와 기능을 세포 발달과정 중에 조절할 수 있다ˮ며, "앞으로 뇌신경과학 연구를 위한 다양하고 복잡한 형태의 체외 신경 모델을 구현하는 데 활용될 것으로 기대된다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업(도약연구)와 글로벌박사양성사업 지원을 받아 수행됐다.
2021.01.06
조회수 58022
-
효율적 정보 처리를 위한 뇌신경망의 최적화 구조 형성 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 대뇌 시각 피질 회로가 정보처리에 가장 최적화된 구조를 자발적으로 형성하는 원리를 밝혔다.
이번 연구 결과는 수 십년간의 뇌신경과학 연구에서 그 원리를 명확히 밝혀내지 못했던 시각 피질 기능성 지도들의 복합 구조 형성의 기작을 규명한 것으로, 수학적 모델의 도입을 통해 복잡한 생물학적 신경망 구조의 기원을 찾아낸 성공적인 연구로 평가된다.
연구팀은 망막 신경세포들이 초기 발생 단계에서 일정한 물리적 공간 분포 패턴을 형성하는 과정에서 다양한 종류의 정보 처리 회로가 자발적으로 생성될 뿐만 아니라, 이 패턴으로부터 시각 피질의 기능성 뇌지도들의 규칙적이고 효율적인 복합적 구조가 형성됨을 밝혀냈다.
바이오및뇌공학과 송민 박사과정과 장재선 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘셀(cell)’의 온라인 자매지 ‘셀 리포츠(Cell Reports)’ 1월 5일 자에 게재됐다. (논문명: Projection of orthogonal tiling from the retina to the visual cortex).
포유류의 일차시각피질 신경세포들은 눈으로부터 입력된 시각 정보의 색, 물체의 형태를 이루는 선분의 각도, 폭 등의 기본적인 시각 정보를 구별하여 전기적 신호로 부호화 한다. 예를 들어 시각 자극의 방향에 따라 반응의 정도가 달라지는 성질인 방향 선택성(orientation selectivity)을 가지는 세포들은 물체의 형태를 구별하기위해 필요한 윤곽선에 대한 정보를 선택적으로 처리한다.
이러한 시각 피질 세포들의 방향 선택성, 공간 주기성등의 성질은 시각 피질 상에서 연속적, 주기적인 형태로 변하는 기능성 지도 (functional map) 구조를 형성하는데, 이 지도들의 구조는 서로 독립적으로 형성되는 것이 아니라 서로 수평, 또는 수직 관계를 이루며 매우 효율적인 짜임새 구조(efficient tiling)를 이룬다. 이를 통해 시각 피질의 모든 국소 영역에서 정보 요소들을 손실없이 효율적으로 부호화할 수 있도록 만드는 대주(hypercolumn) 구조를 형성하는데, 시각 정보처리의 핵심이 되는 이러한 기능성 구조가 어떻게 발생하는지에 대해서는 밝혀진 바가 없었다.
연구팀은 수학적 모델에 기반한 컴퓨터 시뮬레이션을 통하여 포유류의 망막에서 발견되는 신경절 세포들이 단순한 물리적 상호작용을 통해 시각 정보의 입력이 없는 상태에서도 놀라울 정도로 효율적인 공간적 배치를 자발적으로 형성할 수 있음을 확인하였다.
연구팀은 이러한 구조가 시각 피질로 투영되어 시각 피질의 다양한 기능성 뇌지도들을 형성됨과 동시에, 그 지도들 간의 상호 짜임새를 정보처리에 가장 최적화된 형태로 구성할 수 있음을 보였다. 뇌의 주요 정보 처리 회로에 대한 설계도가 이미 망막 단계의 신경망이 형성되는 과정에서 자발적으로 발생함을 증명한 것이다.
백세범 교수는 “시각 정보처리의 핵심 구조인 시각 피질의 기능성 지도가 어떻게 자발적으로 발생하는지 규명하였을 뿐 아니라, 다양한 정보를 처리하는 각각의 뇌신경망 회로 구조가 단순한 물리적 상호작용에 의해 가장 효율적인 형태의 복합 구조를 형성할 수 있음을 처음으로 증명한 연구다" 라고 언급했다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.06
조회수 54972
-
우리 뇌가 기억력을 유지하는 메커니즘 밝혀
우리 연구진이 성인의 뇌가 기억력을 유지하는 메커니즘을 밝혔다.
우리 대학 생명과학과 정원석 교수와 이준혁 박사과정 연구팀이 한국뇌연구원의 박형주 박사와 김지영 연구원 연구팀과 공동연구를 통해 이전까지 알려지지 않았던 새로운 뇌 항상성 유지 기전을 처음으로 밝혀 국제학술지 `네이처(Nature)'에 공개했다고 5일 밝혔다.
성인 *해마에서는 학습 및 기억 형성 중에 기존의 시냅스는 사라지고 새로운 *시냅스가 생기는 시냅스 재구성이 일어난다. 그러나 어떻게 시냅스가 사라지고 이러한 시냅스 제거가 학습과 기억 과정 중에 어떠한 역할을 맡는지는 여전히 알려지지 않았다.
☞ 해마(hippocampus): 뇌의 부위 중 하나로 학습, 기억 및 새로운 것의 인식 등의 역할을 한다.
☞ 시냅스(synapse): 뉴런(신경세포) 간 또는 뉴런과 다른 세포 사이의 접합 관계나 접합 부위를 말한다. 뉴런이 모여 있는 곳, 즉 뇌와 척수에 집중되어 있다.
공동연구팀은 중추 신경계에서 다양한 역할을 수행하는 신경교세포 중 가장 숫자가 많은 `별아교세포'가 뇌 발달 시기에 시냅스를 먹어서 없앤다는 정원석 교수의 선행 연구 결과(네이처(Nature), 2013년)에 착안해 연구를 진행하였다. 그 결과, 성체 뇌에서도 별아교세포가 불필요한 시냅스를 끊임없이 제거하고 있음을 발견했으며, 이 현상이 학습 및 기억에 중요한 해마 내 흥분성 시냅스의 회로 유지를 가능하게 한다는 사실을 증명했다.
이전에는 신경교세포의 시냅스 제거 현상을 전자 현미경 또는 시냅스 염색법을 사용해 확인했었다. 그러나 이러한 방법은 신경교세포에 의해 먹힌 시냅스가 세포 내 산성 소화기관에서 급속히 분해되기 때문에 잔여 시냅스를 표시하고 관찰하는 데 한계가 있었다.
이에 연구팀은 시냅스에 산성화 감지가 가능한 형광단백질 조합(mCherry 물질과 eGFP 물질)을 발현시키는 바이러스 기반 시냅스 포식 리포터를 개발했다. 이 형광단백질들은 일반적인 중성 pH 조건에서 원래의 형광 강도를 유지하지만, 세포 속 소화기관 같은 산성 환경에서는 eGFP 물질은 빠르게 분해되어 신호가 사라지고 mCherry 물질은 천천히 분해되어 신호가 유지된다는 특징이 있다. 이러한 원리를 활용해, 연구팀은 mCherry-eGFP를 바이러스를 통해 흥분성 및 억제성 시냅스에 각각 발현시켰고 이후 mCherry-eGFP로 표시된 시냅스들과는 달리 신경교세포에 의해 먹힌 시냅스는 mCherry 물질만의 단독 신호로 관찰됨을 확인했다.
연구팀은 새로 개발한 방법을 이용해, 기존의 방법으로는 관찰할 수 없었던 현상인 별아교세포가 성인 해마에서 시냅스를 지속적으로 제거하며 특히 흥분성 시냅스를 더 많이 제거하고 있음을 발견했다.
놀랍게도 연구팀은 뇌의 면역세포라 불리는 미세아교세포보다 별아교세포가 주도적으로 정상 해마의 흥분성 시냅스를 제거하고 있음을 확인하여 미세아교세포가 시냅스를 제거하는 주된 세포일 것이라는 기존의 학설을 뒤집었다.
미세아교세포를 인위적으로 제거했을 때는 시냅스의 수가 변하지 않았지만, 해마의 별아교세포가 시냅스를 먹지 못하도록 유전자 조작을 했을 때는 비정상적인 시냅스가 과도하게 급증가하고 정상적인 해마 신경 회로의 기능과 기억 형성 능력이 떨어진다는 것을 처음으로 관찰한 것이다.
게다가 연구진은 유전자 변형을 통해 별아교세포의 시냅스 제거 작용을 억제한 생쥐에서는, 해마 내 시냅스 연결 가소성과 기억 형성에 문제가 생김을 발견했다. 이는 불필요한 시냅스들을 별아교세포가 제거하지 않는다면 뇌의 정상적인 학습과 기억 능력이 유지될 수 없다는 것을 의미한다.
연구팀은 이번 연구성과를 통해 별아교세포에 의한 성인 뇌의 흥분성 시냅스 재구성이 정상적 신경 회로망 유지 및 기억 형성에 필수적인 기전이라 제시했다. 이 메커니즘은 향후 뇌 기능 및 관련 신경 회로의 항상성 유지에 관한 다양한 연구들에 활용될 수 있을 것으로 기대되고 있다.
또한 연구팀은 "비정상적인 수준의 시냅스 수 변화는 자폐 스펙트럼 장애, 조현병, 치매 및 여러 형태의 발작과 같은 다양한 신경질환의 유병률과 연관성이 높다ˮ며 "시냅스 수를 다시 정상으로 회복하기 위해 별아교세포가 시냅스를 먹는 현상을 조절하는 것이 이들 뇌 질환을 치료하는 새로운 전략이 될 수 있다ˮ고 말했다.
우리 대학 생명과학과 이준혁 박사과정과 뇌연구원 김지영 연구원이 공동 제1 저자로 참여하고, 정원석 교수와 박형주 박사가 공동 교신저자로 참여한 이번 연구는 뇌인지과학 연구분야에 새로운 돌파구를 마련한 것으로 인정받아 최상위 국제학술지 `네이처(Nature)'에 지난 12월 23일 字 공개됐다. (논문명: Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis)
한편, 이번 연구는 삼성미래기술육성재단, 뇌원천기술개발사업, 한국뇌연구원 기관고유사업 등의 도움을 받아 진행됐다.
2021.01.06
조회수 54407
-
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다.
이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다.
또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다.
연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다.
☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다.
우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks)
신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다.
이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다.
이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다.
이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다.
이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다.
연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다.
백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다.
한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 62605
-
인공지능으로 자폐 증상과 심각도 예측한다
뇌영상 빅데이터를 활용한 딥러닝(Deep Learning)으로 자폐 스펙트럼 장애(ASD)의 증상과 심각도를 예측할 수 있다는 것이 확인됐다. 이번 연구에 따라 ASD 환자들 진단과 예후에 따른 맞춤형 치료가 가능할 것으로 기대되고 있다.
우리 대학 바이오및뇌공학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 세브란스병원 소아정신과 천근아 교수(연세자폐증연구소장) 연구팀은 ASD의 뇌영상 빅데이터를 활용해 자폐의 증상과 예후를 예측할 수 있다고 28일 밝혔다.
이번 연구결과는 ASD 아동들의 뇌영상 빅데이터를 이용한 국내 최초의 AI연구성과로, 국제전기전자기술자협회(IEEE)에서 발행하는 저널인 IEEE 엑세스(Access) 온라인판에 게재됐다.
ASD는 뇌 발달 장애의 하나로 사회적 의사소통의 결함과 제한된 관심사 및 반복적인 행동이 대표적인 특징이다. 2020년도 미국 CDC(미국질병통제예방센터)의 통계자료에 따르면 ASD의 유병률은 54명당 1명으로 매년 증가하는 추세이다. 국내 유병률도 약 2% 내외이다.
ASD는 아동 행동 관찰 및 상담과 정신질환 진단분류매뉴얼(DSM-5)에 근거해 진단한다. 하지만 환자 개인차가 심해 자폐에 대한 정확한 진단이 어렵고 예후를 예측하기도 힘들다.
이상완·천근아 교수 연구팀은 세브란스병원에 구축된 3~11세 ASD 환자 84건의 MRI 빅데이터와 국제컨소시엄으로 구축된 1000여 건의 자폐증 환자 MRI 빅데이터를 활용해 MRI 영상으로 자폐의 진단과 예후를 예측할 수 있는 딥러닝 모델을 개발했다.
연구팀은 공간 변경 네트워크(Spartial Transformer Network, STN)와 3D 컨볼루션 신경망(convolutional neural network, CNN)을 활용한 모델을 구축하고, MRI 빅데이터를 학습시켰다.
이렇게 구축된 모델에 클래스 활성화 매핑(class activation mapping) 기법을 적용해 형태학적인 특징을 추출하고 이를 뇌영상에 투영시키는 방식으로 분석했다. 더 나아가 인자들간의 관계 분석을 위해 강화학습 모델의 일종인 회귀형 주의집중 모델(recurrent attention model)을 학습시켰다.
분석결과 뇌의 기저핵을 포함한 피질 하 구조가 자폐 심각도와 관련이 있음을 확인했다.
이상완 교수는 “진료 현장에서 자폐를 진단하고 연구하는데 구조적 연관 후보를 제공할 수 있게 됐다”며 “이번 연구결과로 자폐 진단에서뿐만 아니라 앞으로 의사나 관련 전문가들이 인공지능을 활용해 복잡한 질병을 이해하고 더 많이 활용할 수 있게 될 것”이라고 설명했다.
천근아 교수도 “자폐스펙트럼장애를 진단함에 있어 뇌 영상 자료는 아직까지 의사들 사이에서 활용가치가 높지 않다는 인식이 보편적인데 이번 연구를 통해 자폐의 하위 증상과 심각도 사이에 뇌영상에서 차이가 있다는 것을 확인했다”며 “이번 연구는 다양한 임상표현형과 심각도를 지닌 자폐증 환자들에게 개별 맞춤 진단과 예후를 예측하는데 의미를 가진다”고 말했다. [보도자료 출처: 세브란스병원 홍보팀]
2020.08.28
조회수 25195
-
바이오및뇌공학과 김진우 학사과정, 국제 학술지 표지 논문 게재
우리 대학 바이오및뇌공학과 백세범 교수 연구팀에 소속된 대학생(학사과정)의 연구논문이 뇌신경과학 분야 저명 국제학술지에 게재됐음은 물론 해당 저널의 표지 논문으로 선정돼 화제가 되고 있다.
바이오및뇌공학과 4학년에 재학 중인 김진우 학생(22세)이 백세범 교수의 지도하에 수행한 학부생 개별연구 프로젝트에서 두뇌의 *시각 피질에서 관측되는 주요 신경망 연결 구조 중 하나인 '장거리 수평 연결(Long-range horizontal connection)'이 두뇌 발생 초기에 형성되는 원리를 규명한 연구결과가 뇌신경과학 분야 '저널 오브 뉴로사이언스'의 표지 논문으로 선정됐다.
☞ 시각 피질(Visual Cortex): 두뇌에서 시각 정보처리를 담당하는 영역. 망막 신경망 영역을 통해 입력받은 외부 공간에 대한 시각 정보를 처리하여 인지 과정을 구현하는 기능성 신경망 구조로 이루어져 있다.
연구팀은 이번 연구를 통해 어린 포유류 동물이 눈을 뜨기 전, 시각적인 학습이 전혀 이뤄지지 않은 상태, 즉 두뇌 발생 초기 상태에서 *망막 내 신경세포들의 자발적인 활동으로부터 발생하는 '*망막 파동'이 두뇌 시각 피질의 신경세포들을 특정한 공간적 패턴으로 자극하고, 이를 통해 시각 정보 처리에서 중요한 역할을 담당하는 '장거리 수평 연결'을 형성한다는 사실을 밝혀냈다.
☞ 망막(Retina): 눈의 안쪽을 둘러싸고 있는 신경세포의 얇은 층으로, 시각 시스템에서 외부 시각 정보가 신경세포 신호로 처음 변환되는 영역
☞ 망막 파동(Retinal Wave): 포유류의 초기 발달과정의 망막에서 나타나는, 신경절 세포들이 차례대로 발화하며 파도와 같은 파형으로 활동패턴이 확산하는 현상
김진우 학생과 송민 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 뇌신경과학 분야의 대표 국제학술지인 '저널 오브 뉴로사이언스 (Journal of Neuroscience)' 19일 字에 게재되는 한편 해당 호 표지 논문으로 선정됐다. (논문명: Spontaneous retinal waves generate long-range horizontal connectivity in visual cortex)
포유류의 시각 피질에서는 신경세포들이 외부 시각 자극의 특정 요소에만 선택적으로 반응하는 신경 선택성(neural tuning)을 보이는데, 비슷한 신경 선택성을 가지는 세포들은 공간적으로 멀리 떨어져 있어도 '장거리 수평 연결'이라는 특별한 상호 연결망 회로로 이어져 있다. 이처럼 특이한 신경망 연결 구조는 포유류의 시각 인지기능에 중요한 역할을 하는 것으로 생각돼왔지만, 이러한 회로가 뇌의 발생 초기 단계에서 외부 시각 정보에 의한 자극 없이 어떻게 자발적으로 발생하는지는 아직까진 명확히 알려진 바가 없었다.
백 교수 연구팀은 망막 내 신경망 구조를 모델화하고, 이를 통해 망막 파동의 패턴이 시각 피질 내 구조 형성에 미치는 영향을 시뮬레이션했다. 그 결과, 연구팀은 망막의 신경절에서 자발적으로 발생하는 망막 파동이 시각 피질로 전달되는 과정에서 형성되는 선택적 활동 패턴이 시각 피질 내의 장거리 연결 구조를 형성함을 밝혀냈고, 이 모델을 기반으로 동물실험에서 관측되는 초기 시각 피질의 특징적인 신경 활동 패턴을 재현하는 데 성공했다.
이 연구를 통해 연구팀은 동물실험에서 관측된 시각 피질의 장거리 수평 연결이 형성되는 과정과 주요 인자들을 정확히 확인했다. 이 결과를 기반으로 연구팀은 뇌 피질 내에서의 활동 패턴이 피질 구조를 결정한다는 기존 모델의 오류를 지적하는 한편, 망막에서 전달된 활동 패턴이 시각 피질의 구조를 형성하는 데 결정적인 영향을 끼친다는 새로운 발생 모델을 제시했다.
백세범 교수는 "외부의 정보를 학습할 수 없는 감각 신경망의 발생 초기 단계에서, 감각기관 말단의 신경 활동 패턴이 뇌 신경망의 주요 구조 형성에 결정적으로 기여한다는 새로운 뇌 구조 발생 모델을 제시한 연구라는 점에서 의미가 크다ˮ고 설명했다.
김진우 학생은 "이번 연구는 뇌가 외부 세계에 대한 감각 정보를 처음으로 경험하기 이전에 어떻게 비 지도적으로 학습을 하는지에 대해, 알려진 실험 데이터에 기반한 명확한 이론적 설명을 제공한다는 점에서 흥미롭다ˮ고 말했다. 그는 이어 "이와 같은 방향의 연구가 향후 데이터 학습에 의존하지 않는 새로운 형태의 인공신경망 연구에도 큰 도움이 될 것으로 기대가 된다ˮ고 덧붙였다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.08.23
조회수 27921
-
광유전학 · 광치료 연구를 위한 투명 전극 개발
우리 대학 전기및전자공학부 이현주 교수와 이정용 교수, 의과학대학원 이정호 교수 공동연구팀이 폴리머 전기방사 기술을 미세 전자 기계 시스템(MEMS, Micro Electro Mechanical Systems) 공정에 접목해 실시간으로 뇌피질 전도 측정이 가능한 투명하고 유연한 미세전극 어레이(배열)를 개발했다고 15일 밝혔다.
☞ 폴리머: 한 종류 또는 수 종류의 구성단위가 서로에게 많은 수의 화학결합으로 중합돼 연결된 상태의 분자로 구성된 화합물. 통상적으로 고분자 화합물(분자량이 1만 이상의 화합물)과 같은 의미로 사용되는 경우가 많은데 고분자를 영어로는 폴리머(polymer)라고 부른다.
☞ 전기방사: 폴리머(고분자) 용액에 고전압을 인가해 나노파이버(나노섬유)를 생산하는 첨단 기술
☞ 미세 전자 기계 시스템: 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품 및 시스템을 설계·제작하고 응용하는 기술을 의미
이번에 개발된 뇌피질 전도 미세전극 어레이는 기존의 불투명한 금속 전극과는 달리 빛에 의해 발생하는 잡음 신호가 매우 작고 자유로운 빛의 전달이 가능해 광유전학 및 광 치료 연구에 큰 도움을 줄 것으로 기대된다.
최근 빛의 새로운 활용법과 생체 내 효능에 대한 발견으로 인해 빛을 생체 내의 특정 영역에 조사해 생기는 반응과 효과에 관한 연구들이 주목을 받고 있다. 대표적인 예가 광유전학, 광 치료 기술 등이다. 광유전학은 기존 신경 자극기술과는 달리 매우 국소적인 부위의 신경 세포를 자극하고, 광 치료법은 수면장애와 알츠하이머병의 치료 가능성으로 이 분야에 관한 연구들이 활발히 진행되고 있다.
빛에 의한 생체 내 반응을 측정하는 대표적인 방법으로는 체내에 센서 등을 장착해서 호르몬의 분비과정에서 발생하는 전기생리 신호를 측정하는 방법이다. 통상적으로 전기생리 신호 측정을 위해 사용하는 일반적인 금속 박막 전극은 높은 반사도와 낮은 투과도 때문에 빛의 전달을 방해할 뿐만 아니라 빛을 쬘 때 베크렐 효과(금속 전극이 빛을 받으면 전극에 전위차가 생겨 전류가 흐르는 현상)에 의해 '포토일렉트릭 아티팩트'라는 잡음 신호가 발생한다. 따라서 일반 금속 박막 전극은 정확한 전기생리 신호를 측정하기가 어렵다.
이현주 교수팀은 그간 이런 문제해결을 위해 MEMS 공정을 통해 제작되는 미세전극 어레이를 투명화하기 위한 연구를 지속적으로 수행해왔는데 최근 폴리머 전기방사 기술을 MEMS 공정에 접목해 뇌피질 전도(ECoG, ElectroCorticoGram)측정을 위한 유연하고 투명한 미세전극 어레이를 제작하는데 성공했다. 이 장치는 높은 투과도를 지니고 있어 '포토일렉트릭 아티팩트'가 매우 약하고 또 빛의 전달이 매우 용이하기 때문에 다른 투명 미세전극 어레이와 비교해 보면 전기화학 임피던스가 낮아 뇌피질 전도 측정이 매우 유리하다.
연구팀은 자체개발한 유연·투명한 미세전극 어레이 성능평가를 위해 외부 변형에 따른 저항 변화와 전기방사 시간에 따른 전기화학 임피던스, 전하 저장 용량 등을 측정한 결과, 전극 자체의 특성을 쉽게 조절이 가능한 점 등 여러 면에서 우수한 성능을 보였다고 설명했다. 연구팀은 특히 미세 전극에서 발생하는 `포토일렉트릭 아티팩트'를 비교 분석했는데 10배 이상 감쇄 효과가 있음을 확인했다. 이와 함께 쥐 뇌의 다양한 피질 영역에 걸쳐 유연·투명한 미세전극 어레이를 위치시킨 후 광 자극을 통해 발생하는 뇌피질 전도 신호를 측정한 결과, 신호를 정량적으로 비교하고 빛이 원활하게 전달되는 현상을 관측하는데 성공했다.
연구팀은 현재 이 신기술을 기반으로 광 자극과 함께 정확한 뇌피질 전도를 실시간으로 측정할 수 있는 미세전극과 미세광원이 집적된 다기능성 미세전극 어레이 개발을 위한 후속연구를 진행 중이다. 광원과 전극이 함께 집적된 다기능성 소자 개발에 성공할 경우 광유전학이나 광 치료 등의 연구를 진행하는 뇌과학자들이 편하게 사용할 수 있는 뉴로 툴(Tool) 개발로 이어질 것으로 전문가들은 예상하고 있다.
이현주 교수는 "기존에는 광전 효과로 인해 불가피하게 발생하는 잡음 신호로 인해서 광 자극과 동시에 뇌피질 전도 측정이 불가능했지만 유연하고 투명한 미세전극 개발을 계기로 광 자극과는 무관하게 실시간으로 뇌피질 전도 측정이 가능하게 됐다”고 말했다.
이현주 교수 연구팀의 서지원 박사와 김기업 박사과정생, 그리고 이정용 교수 연구팀의 서기원 박사과정생이 각각 주도하고 의과학대학원 이정호 교수와 김정욱 박사가 참여한 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)'誌 7월 2일 字에 게재됐으며 표지논문(Front Cover)으로 선정됐다. (논문명: Artifact-Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array)
한편, 이 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2020.07.15
조회수 30044
-
뇌 구조를 정확히 볼 수 있는 3차원 분석기술 개발
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 뇌신경과학 연구에서 광범위하게 사용되는 실험용 쥐의 뇌 절편 영상을 자동으로 보정하고 규격화하여 신경세포의 3차원 분포정보를 정확하게 얻을 수 있는 핵심 분석 기술을 개발했다.
이 기술은 실험자의 경험에 의존하던 기존 분석 방식의 문제점을 해결하는 한편 여러 개체에서 얻은 뇌 이미지를 표준적인 3차원 지도상에서 비교 분석할 수 있도록 한다. 이는 기존의 개체별 분석에서는 관측하기 힘든 뇌세포 간 상호 연결 형태의 정확한 공간적 분포를 발견할 수 있는 길을 열었다는 점에서 의미가 크다.
연구팀은 생명과학과 이승희 교수팀과의 협력 연구를 통해 실험에서 얻어진 쥐의 뇌 절편 데이터를 분석했는데, 이 기술을 적용한 결과 시각시스템의 초기구조인 외측 슬상핵(Lateral geniculate nucleus)과 시각피질 (Visual cortex) 사이의 정확한 연결 구조 분포를 측정할 수 있었다. 기존 분석 방식으로는 불가능했던 다중 개체로부터 얻어진 데이터의 표준화를 통해 뇌 전역에 걸친 신경세포의 연결성을 분석할 수 있음을 확인한 것이다.
뇌인지공학프로그램 최우철 박사과정과 송준호 연구원이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `셀(cell)'의 온라인 자매지 `셀 리포츠(Cell Reports)' 5월 26일 자에 게재됐다. (논문명 : Precise mapping of single neurons by calibrated 3-D reconstruction of brain slices reveals topographic projection in mouse visual cortex).
이에 앞서 연구팀은 이 기술을 활용해 UC 버클리대학의 양단(Yang Dan) 교수와의 공동연구에도 참여했고 그 결과를 국제 학술지 `사이언스 (Science)' 1월 24일 자에 발표했다. (논문명: A Common Hub for Sleep and Motor Control in the Substantia Nigra).
통상 쥐의 뇌 절편 영상을 이용한 연구에서는 특정 단백질에 형광물질을 발현시킨 뇌를 잘라 신경세포의 분포 등을 분석하는 방법이 광범위하게 사용된다. 이때 형광을 발현하는 신경세포를 현미경을 통해 연구자의 육안으로 관측하고, 얼마나 많은 신경세포가 뇌의 어느 특정 영역에 위치하는지 일일이 수동적으로 분석한다. 이런 방법은 연구자의 경험에 크게 의존하여 오차가 클 수밖에 없고, 각각의 개체에서 관측된 신경세포의 위치나 수량을 표준적인 공통의 방법으로 동시에 분석할 수 없다는 한계를 갖고 있다.
백 교수 연구팀은 미국의 Allen Brain Atlas 프로젝트에서 제공한 쥐 두뇌의 3차원 표준 데이터에 기반하여, 임의의 각도에서 잘라낸 뇌 절편 이미지들을 SURF(Speeded Up Robust Feature Points) 특징점과 HOG(Histogram of Oriented Gradients descriptor) 형상 기술자를 이용하여 데이터베이스와 비교하는 계산적인 분석 방법을 사용했다.
그 결과, 실험에서 얻은 뇌 이미지와 가장 잘 일치하는 데이터베이스의 3차원 위치를 100마이크로미터(μm), 1도 이내의 오차로 찾아낼 수 있었다. 연구팀은 이를 통해 각 2차원 뇌 이미지의 위치 정보를 3차원 공간상의 위치로 정확히 계산하고, 여러 개체에서 얻어진 신경 세포의 위치를 동일한 3차원 공간에 투영해 정확하게 분석할 수 있음을 확인했다.
따라서 이 기술을 활용하면 다양한 기법으로 생성된 뇌 슬라이스 이미지를 이용해 신경세포의 3차원 위치를 뇌 전체에서 자동적으로 계산할 수 있어, 기존의 방법으로는 분석하기 어려운 수천~수만 개의 신경세포들의 정확한 뇌 내 분포 위치 및 상대적 공간 배열을 한번에 분석하는 것이 가능하다.
또 신경세포들의 연결성을 표준적으로 보정된 3차원 공간에서 표현할 수 있어 특정 뇌 영역 간의 연결은 물론 뇌 전역의 네트워크 분포를 여러 개체의 데이터를 사용해 동시분석도 가능하다. 따라서 기존 방식의 동물실험 분석에서 요구되던 시간과 비용을 크게 줄일 수 있을 것으로 기대된다.
올 6월 현재 백 교수 연구팀의 이 기술은 KAIST내 여러 실험실과 미국 MIT, 하버드(Harvard), 칼텍(Caltech), UC 샌디에고(San Diego) 등 세계 유수 대학의 연구 그룹에서 진행하는 뇌 신경 세포의 네트워크 분석에 활용되고 있다.
백세범 교수는 "이번 연구를 통해 개발된 기술은 형광 뇌 이미지를 이용하는 모든 연구에 바로 적용할 수 있을 뿐만 아니라 그 밖에 다양한 종류의 이미지 데이터에도 광범위하게 적용 가능하다ˮ면서 "향후 쥐의 뇌 슬라이스를 이용하는 다양한 분석에 표준적인 기법으로 자리 잡을 수 있을 것으로 기대된다ˮ고 말했다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업, KAIST의 모험연구사업의 지원을 받아 수행됐다.
2020.06.08
조회수 16503
-
알츠하이머 치료제 개발을 위한 새로운 가능성 제시
우리 연구진이 알츠하이머 발병 원인을 동시다발적으로 억제 가능한 치료제 개발 원리를 증명하고 또 동물실험에서 효능을 입증하는 등 알츠하이머병에 관한 새로운 치료제 개발에 대한 가능성을 제시함으로써 많은 주목을 받고 있다.
우리 대학 화학과 임미희 교수 연구팀이 알츠하이머 발병의 원인으로 알려진 ‘활성 산소종’과 ‘아밀로이드 베타’, ‘금속 이온’ 등을 손쉽고도 동시다발적으로 억제할 수 있는 치료제 개발 원리를 새롭게 증명하고 알츠하이머 질환에 걸린 동물 모델(실험용 쥐) 치료를 통해 이를 입증하는 데 성공했다고 11일 밝혔다.
이번 연구에는 KAIST 백무현 교수와 서울아산병원 이주영 교수도 함께 참여했으며 저명 국제 학술지인 미국 화학회지(Journal of the American Chemical Society) 4월 1일 字에 게재됐다. 이 논문은 특히 4월 26일 字 ‘편집장 선정 우수 논문(Editors’Choice Paper)’으로 꼽혀 많은 주목을 받고 있다. (논문명 : Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia)
알츠하이머병은 치매를 일으키는 대표적인 뇌 질환이다. 이 질환의 원인으로 다양한 요소들이 제시됐지만, 원인 인자들 사이의 원리들은 아직도 명확하게 밝혀지지 않고 있다.
알츠하이머병을 일으키는 대표적인 원인 인자로는, 활성 산소종과 아밀로이드 베타, 금속 이온이 알려져 있다. 이 요인들은 개별적으로 질병을 유발할 뿐만 아니라, 상호 작용을 통해 뇌 질환을 더욱 악화시킬 수 있다. 예를 들어, 금속 이온들은 아밀로이드 베타와 결합해 아밀로이드 베타의 응집 속도를 촉진시킬 뿐만 아니라, 활성 산소종들을 과다하게 생성하여 신경독성을 유발할 수 있다. 따라서 이처럼 복잡하게 얽힌 여러 원인 인자들을 동시에 겨냥할 수 있는 새로운 알츠하이머병 치료제 개발이 필요하다.
임 교수 연구팀은 단순한 저분자 화합물의 산화 환원 반응을 이용해 알츠하이머병의 원인 인자들을 손쉽게 조절할 수 있음을 증명했다. 임 교수팀은 산화되는 정도가 다른 화합물들의 합리적 설계를 통해 쉽게 산화되는 화합물들은 알츠하이머 질병의 여러 원인 인자들을 한꺼번에 조절할 수 있다는 사실을 확인했다.
연구 결과, 임 교수 연구팀은 저분자 화합물의 산화 환원 반응으로 활성 산소종에 대한 항산화 작용의 가능성을 확인했을 뿐만 아니라 아밀로이드 베타 또는 금속-아밀로이드 베타의 응집 및 섬유 형성 정도 또한 확연히 감소되는 것을 실험적으로 증명했다.
이 밖에 알츠하이머병에 걸린 동물 모델(실험용 쥐)에 체외 반응성이 좋고 바이오 응용에 적합한 성질을 가지고 있는 대표 저분자 화합물을 주입한 한 결과, 뇌 속에 축적된 아밀로이드 베타의 양이 크게 줄어드는 현상과 함께 알츠하이머 동물 모델의 손상된 인지 능력과 기억력이 향상되는 결과를 확인했다.
이번 연구가 크게 주목받는 이유는 알츠하이머병을 치료하기 위한 화합물을 개발하는 데 있어 아주 단순한 방향족 저분자 화합물의 구조변화를 통해 산화 환원 정도를 조절하여 여러 원인 인자들을 동시에 조절할 수 있고 이러한 간단한 원리를 통해 누구나 손쉽게 치료제를 디자인할 수 있기 때문이다.
임미희 교수는“이번 연구는 아주 단순한 방향족 저분자 화합물의 산화 정도의 차이를 이용해 여러 원인 인자들과의 반응성 유무를 확연히 구분할 수 있다는 점을 증명한 데 의미가 있다”며, “이 방법을 신약 개발의 디자인 방법으로 사용한다면, 비용과 시간을 훨씬 단축시켜 최대의 효과를 가질 수 있다”고 덧붙였다. 임 교수는 이와 함께 “제시된 치료제의 디자인 방법은 다양한 퇴행성 뇌 질환 치료제들의 개발 성공 가능성을 높일 것으로 기대된다”라고 강조했다.
한편 이번 연구는 한국연구재단, 기초과학연구원과 서울아산병원 등의 지원을 받아 수행됐다.
2020.05.11
조회수 17785
-
머리에 빛을 비춰 신경세포 재생과 공간기억 향상
뇌질환 상태에서 신경재생으로 일시적인 기억향상이 일어나는 기전이 밝혀졌다.
우리 대학 생명과학과 허원도 교수 연구팀은 머리에 빛을 비춰 뇌신경세포 내 Fas 수용체의 활성을 조절함으로써 신경재생과 공간기억 능력이 향상됨을 보였다.
Fas 수용체는 허혈성 뇌질환, 염증성 뇌질환, 퇴행성 신경질환 등 다양한 대뇌질환에 걸린 경우 발현이 유도되는 단백질이다. 일반적으로는 세포를 죽음에 이르게 하지만, 신경계의 다양한 세포들에서는 세포증식 관련 신호전달 경로를 활성화시켜 세포를 재생시킨다. 특히, 뇌질환에 걸린 경우 대뇌 해마의 신경재생에 Fas 수용체가 관련되어 있다는 사실이 알려져 왔으나, 연구방법의 한계로 세부적인 기전에 대해서는 아직 자세히 알려진 바가 없다. 또한, 질환이 있는 뇌에서 해마가 관장하는 공간기억이 Fas 단백질에 의해 어떻게 영향받는지에 대해서도 논란이 되어 왔다.
연구팀은 광수용체 단백질의 유전자에 Fas 수용체 단백질의 유전자를 결합시킴으로써 청색광을 쬐어주면 Fas 단백질의 활성이 유도되는 옵토파스(OptoFAS) 기술을 개발했다. 살아있는 생쥐 대뇌에 다양한 시간동안 빛을 쬐어주면서 시공간적으로 Fas 수용체 단백질의 활성을 조절함으로써 대뇌 해마에서 여러 신호전달 경로들이 순차적으로 활성화되고, 그 결과로 신경재생과 공간기억 능력이 향상된다는 것을 확인했다.
옵토파스(OptoFAS) 기술은 빛을 이용하여 세포의 기능을 조절하는 광유전학(Optogenetics) 기술이다. 배양시킨 세포나 살아있는 생쥐 머리에 청색광을 쬐어주면 광수용체 단백질 여러 개가 결합되며, 이 단백질 복합체가 하위 신호전달경로들을 활성화시킨다. 생체 내에 광섬유를 삽입하여 원하는 시간에 빛을 뇌 조직 내로 전달하는 방식으로 선택적으로 단백질을 활성화시킬 수 있다.
연구팀은 빛을 이용해 대뇌 해마의 치아이랑에 존재하는 미성숙신경세포에서 옵토파스를 활성화시키고, 빛을 쬐어주는 시간에 따라 미성숙신경세포와 신경줄기세포에서 각각 서로 다른 하위 신호전달경로가 활성화됨을 관찰했다. 또한 이 현상에 특정 뇌유래 신경성장인자가 관여함을 밝혀내었다. 반복적으로 충분한 시간동안 빛을 쬐어주면 해마 치아이랑의 신경줄기세포가 증식하는 성체 신경재생이 관찰되었으며, 실험 대상 쥐에서는 일시적으로 공간기억 능력이 향상됨을 밝혔다.
옵토파스 기술을 이용하면 약물을 처리하거나 유전자변형 쥐를 사용하였을 때 발생하는 여러 부작용이 없이 빛 자극만으로 쥐의 생리현상에 지장을 주지 않으면서 뇌신경세포에서 Fas 단백질의 활성을 실시간으로 조절할 수 있다. 질환이 있는 뇌에서 Fas 단백질이 활성화되어 질병에 맞서 대뇌의 기능을 보호하는 여러 가지 역할을 한다는 사실을 생각해볼 때, 향후 세포 수준을 물론 개체 수준까지 뇌질환 상태에서의 신경행동적인 변화를 규명하는 연구에 활용될 것으로 기대한다.
허원도 교수는 “옵토파스(OptoFAS) 기술을 이용하면 빛만으로 살아있는 개체의 신경세포 내에서 단백질의 활성과 신호전달 경로를 쉽게 조절할 수 있다”며 “이 기술이 뇌인지 과학 연구를 비롯해 향후 대뇌질환 치료제 개발 등에 다양하게 적용되길 바란다”고 말했다.
이번 연구결과는 국제 학술지 사이언스 어드밴시즈(Science Advances, IF 12.80)에 4월 23일 오전 3시(한국시간) 온라인 게재됐다.
2020.04.27
조회수 14539