-
스스로 물체를 집고, 걷는 '실시간 프로그래밍 로봇 시트' 개발
접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다.
우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다.
이번 기술은 ‘필드 프로그래밍(field-programmability)’이라는 개념을 접이식 구조에 성공적으로 도입한 사례로, ‘접힘을 어디서, 어느 방향으로, 얼마나 크게 할지’라는 사용자의 명령을 소재 형상에 실시간으로 반영할 수 있는 소재 기술 및 프로그래밍 방법론을 통합적으로 제안했다.
해당 ‘로봇 시트’는 얇고 유연한 고분자 기판 내에 미세 금속 저항 네트워크가 내장된 구조로, 각 금속 저항이 히터이자 온도 센서 역할을 동시에 수행해, 별도의 외부 장치 없이도 시트의 접힘 상태를 실시간으로 감지하고 제어한다.
또한 유전 알고리즘(genetic algorithm) 및 심층 신경망(deep neural network)을 결합한 소프트웨어를 통해 사용자가 원하는 접힘 위치와 방향, 강도를 소프트웨어적으로 입력하면, 스스로 가열·냉각을 반복하며 정확한 형상을 만들어낸다.
특히, 온도 분포에 대한 폐루프 제어(closed-loop control)를 적용해 실시간 접힘 정밀성을 향상하고, 환경 변화로 인한 영향을 보정했으며, 열 변형 기반 접힘 기술이 지니던 느린 반응 속도 문제도 개선했다.
이러한 형상의 실시간 프로그래밍은 복잡한 하드웨어 재설계 없이도 다양한 로봇의 기능성을 즉석에서 구현할 수 있게 했다는 데에 의미가 있다.
실제로 연구팀은 단일 소재로 다양한 물체 형상에 맞춰 어떻게 잡을지 결정하는 파지(grasping) 전략을 바꿔가며 적용할 수 있는 적응형 로봇 손(그리퍼)를 구현했고, 동일한 ‘로봇 시트(얇고 유연한 형태의 로봇)’를 바닥에 두어 보행하거나 기어가게 하는 등 생체 모방적 이동 전략을 선보였다. 이를 통해 환경 변화에 따라 스스로 형태를 바꾸는 환경 적응형 자율 로봇으로의 확장 가능성도 제시했다.
김정 교수는 “이번 연구는 자기 몸을 바꾸면서 똑똑하게 움직이는 기술 즉, 형상 자체가 지능이 되는‘형상 지능(morphological intelligence)’구현에 한 걸음 다가간 사례로 평가된다. 향후 더 높은 하중 지지와 빠른 냉각을 위한 소재·구조 개선, 배선 없는 일체형 전극에도 다양한 형태·크기로의 확장 등을 통해 재난 현장 대응 로봇, 맞춤형 의료 보조기기, 우주 탐사 장비 등 다양한 분야에 응용될 수 있는 차세대 피지컬 AI 플랫폼으로 발전시킬 계획이다”라고 말했다.
우리 대학 박현규 박사(現 삼성전자 삼성종합기술원)와 정용록 교수(現 경북대학교)가 공동 제1 저자인 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 8월 온라인판에 출판됐다.
※논문명: Field-programmable robotic folding sheet
※DOI: https://www.nature.com/articles/s41467-025-61838-3
한편 이번 연구는 한국연구재단(과학기술정보통신부)의 지원을 받아 수행됐다.
2025.08.06
조회수 450
-
연구자 없이 로봇팔·AI로 소재 혁신 실현
이차전지 양극 소재는 높은 충전 속도, 에너지 밀도, 안정성 등 어려운 기준들을 전부 충족해야 하기 때문에 소재 개발을 위해서는 수많은 소재 후보군을 고려해 탐색을 진행해야만 한다. 국내 산학 협력 연구진이 AI 및 자동화 시스템을 활용해 연구자의 개입 없이 이차전지 양극 소재의 개발을 진행하는 자율 탐색 실험실*을 구축했다. 이를 통해 개발 과정 중 발생하는 연구자의 노동을 최소화하며 탐색 기간을 93% 단축했다.
*자율 탐색 실험실: 자율적으로 실험을 설계, 수행, 분석하여 최적의 소재를 탐색하는 플랫폼
우리 대학 신소재공학과 서동화 교수 연구팀이 포스코홀딩스 미래기술연구원(원장 김기수) 에너지소재연구소 LIB소재연구센터 연구팀과 산학 협력 연구를 통해, AI 및 자동화 기술을 활용해 이차전지 양극 소재를 탐색하는 자율 탐색 실험실을 구축했다고 3일 밝혔다.
이차전지 양극 소재 개발은 필연적으로 시료의 무게를 칭량하고 이송하는 정량, 혼합, 소결* 및 분석 과정을 거쳐 광범위한 양극 조성(화합물 내 성분 원소들이 섞이는 비율) 및 실험 변수 탐색해야 해서 숙련된 연구자의 많은 노동력이 필요하고 긴 개발 시간을 필요로 한다.
*소결: 시료를 가열하여 분말 입자들이 열적 활성화 과정을 거쳐 하나의 덩어리로 되는 과정
연구팀은 연구자의 개입 없이 시료 정량, 혼합, 펠렛화, 소결 및 분석을 수행하는 자동화 시스템과 분석된 데이터를 해석하고 이를 학습해 최선의 후보군을 선택하는 AI 모델을 기반으로 자율 탐색 실험실을 구축했다.
연구팀은 자동화 시스템을 구축하기 위해 정량, 혼합, 펠렛화, 소결 및 분석 과정을 각각 개별 장치 모듈로 구축하고 이를 중앙 로봇팔이 핸들링하는 방법으로 로봇팔의 비중을 줄여 실험 효율을 증대시켰다.
또한, 연구팀은 기존 저속 소결 방법과 다른 고속 소결 방법을 도입하여 합성 속도를 비약적으로 개선했다. 그 결과 소결 공정에 필요한 시간을 50배 단축할 수 있었고, 이를 기반으로 자율 탐색 실험실은 기존 연구자 기반 실험 대비 12배 많은 소재 데이터의 확보가 가능하다.
확보된 많은 소재 데이터는 AI 모델을 통해 자동으로 해석되어 합성된 상 정보 및 불순물 비율 등이 추출된다. 이를 합성 성공 여부와 관계없이 체계적으로 저장하여 양질의 데이터베이스를 구축하며 해당 데이터는 이후 최적화 AI 모델의 학습 데이터로 활용하여 다음에 자동화 시스템이 실험할 양극 조성 및 합성 조건을 추천하는 폐루프 실험 시스템*을 구현했다.
*폐루프 (Closed-loop) 실험 시스템: 실험 전 과정을 연구자의 개입 없이 스스로 수행하는 시스템
지능형 실험 자동화 시스템을 24시간 운용할 경우, 약 12배 이상의 실험 데이터 확보 및 93%의 소재 탐색 시간 단축이 가능하며, 이는 소재 탐색에 필요한 실험 횟수가 500회라고 가정할 시 연구자가 직접 실험을 수행하는 기존 방식으로는 84일이 소요되는 반면, 자동화 시스템은 약 6일 만에 완료할 수 있는 것으로 시간 및 인력 효율을 크게 향상시킬 수 있다.
자율 탐색 실험실 개발 과정에서 포스코홀딩스는 프로젝트 전반의 기획과 총괄 운영을 맡고, 전체 플랫폼 설계에 대한 검토와 부분 모듈 설계 및 AI 기반 실험 설계 모델에 대한 공동 개발을 수행했으며, 서동화 교수팀은 전체 플랫폼 설계, 부분 모듈 설계 및 제작, 알고리즘 제작, 자동화 시스템 기반 실험 검증 및 오류 개선 등 실질적 시스템 구현과 운영을 담당했다.
서동화 교수는 "이번 연구를 통해 구축된 시스템은 저출산으로 인한 연구 인력 감소를 해결할 기술”이라며 "양질의 소재 데이터를 확보하여 이차전지 소재 개발을 가속화 하여 글로벌 경쟁력을 강화 가능할 것으로 기대된다”고 설명했다.
또한, 포스코홀딩스 미래기술연구원은 이번에 개발된 자율 탐색 실험실 시스템을 기반으로, 2026년 이후 업그레이드된 버전을 자체 연구소 실험실에 적용하여 차세대 이차전지 소재 개발 속도를 획기적으로 높이는 것을 목표로 하고 있다. 이를 위해 설비의 안정성과 확장성을 강화하는 후속 개발을 계획 중이며, 산학연이 협력해 개발한 기술이 실제 연구개발 현장에서 활용되는 사례로 이어질 것으로 기대된다.
한편, 이번 연구는 신소재공학과 서동화 교수 연구실의 이현기 박사과정 연구원을 비롯해 배성재, 김동우 석사과정 연구원의 주도로 진행됐으며, 포스코홀딩스 미래기술연구원 에너지소재연구소(소장 홍정진)와 LIB소재연구센터의 박정우 수석연구원, 박인철 수석연구원이 공동으로 참여했다.
2025.08.05
조회수 331
-
생체신호를 이용한 로봇과의 상호작용에 대한 방안 제시
우리 대학 기계공학과 김정, 전기및전자공학과 제민규 교수 공동연구팀이 최근 국제 저명 학술지 ‘네이처 리뷰스 일렉트리컬 엔지니어링(Nature Reviews Electrical Engineering)’에 생체 전위(bio-potential)와 생체 임피던스(bio-impedance)를 활용한 직관적인 인간-로봇 상호작용(Human-Robot Interaction, HRI)에 대한 최신 동향과 발전을 다룬 리뷰 논문을 발표했다고 22일 밝혔다.
이번 리뷰 논문은 두 실험실의 박사 졸업생인 박경서 교수(DGIST, 공동 제 1 저자), 정화영 박사(EPFL, 공동 제1 저자), 정윤태 박사(IMEC), 서지훈 박사(UCSD)가 공동으로 참여한 결과물이다. 네이처 리뷰스 일렉트리컬 엔지니어링(Nature Reviews Electrical Engineering)은 네이처 저널에서 작년부터 새롭게 발행된 전기전자 및 인공지능 기술 분야의 리뷰 전문 학술지로 해당 분야의 세계적인 석학들을 엄격한 기준으로 선정해 초청하는 것으로 알려져 있다. 김정 교수 연구팀의 논문은 “Using bio-potential and bio-impedance for intuitive human-robot interaction”라는 제목으로 2025년 7월 18일자로 게재됐다.
(DOI: https://doi.org/10.1038/s44287-025-00191-5)
이 리뷰 논문에서는 생체신호가 움직임 의도를 빠르고 정확하게 감지하는 데 어떻게 활용될 수 있는지에 대해 설명하며, 신경 신호와 근육 활동을 기반으로 한 움직임 예측 기술의 발전을 소개한다. 또한, 생체 신호 센싱에서 저잡음 성능과 에너지 효율성을 극대화하는 데 있어 집적 회로(ICs)가 중요한 역할을 한다는 점에 중점을 두고, 생체 전위와 임피던스 신호를 정확하게 측정할 수 있는 저잡음, 저전력 설계의 최신 개발 동향도 함께 다룬다.
리뷰는 하이브리드 및 다중 모달 센싱 접근법의 중요성을 강조하며, 이를 통해 강력하고 직관적이며 확장 가능한 HRI 시스템을 구축할 수 있는 가능성을 제시한다. 연구팀은 생체 신호 기반 HRI 시스템을 실용화하기 위해 센서와 IC 설계 분야 간의 협력이 필수적임을 강조하며, 인터디스플리너리 협력이 차세대 HRI 기술 발전에 중요한 역할을 할 것이라고 밝혔다. 논문의 공동 제1 저자인 정화영 박사는 생체 전위와 임피던스 신호가 인간-로봇 상호작용을 더 직관적이고 효율적으로 만드는 데 기여할 수 있는 가능성을 제시하며, 향후 생체신호를 이용한 재활 로봇, 로봇 의수 등 HRI 기술 발전에 중요한 기여를 할 것이라고 전망했다. 본 연구는 한국연구재단의 휴먼 플러스 사업 등의 여러 연구 사업의 지원을 받아 수행됐다.
2025.07.22
조회수 986
-
로봇도 사람처럼 위험할때만 즉각 반응한다
인공지능과 로봇 기술의 동반 발전 속에서, 로봇이 사람처럼 효율적으로 환경을 인식하고 반응하는 기술 확보가 중요한 과제로 떠오르고 있다. 이에 한국 연구진이 별도의 복잡한 소프트웨어나 회로 없이도 생명체의 감각 신경계를 모사한 인공 감각 신경계를 새롭게 구현해 주목받고 있다. 이 기술은 에너지 소모를 최소화하면서 외부 자극에 지능적으로 반응할 수 있어, 초소형 로봇이나 로봇 의수 등 의료 및 특수 환경에서의 활용이 기대된다.
우리 대학 전기및전자공학부 최신현 석좌교수, 충남대학교 반도체융합학과 이종원 교수 공동연구팀이 생명체의 감각 신경계 기능을 모사하는 차세대 뉴로모픽 반도체 기반 인공 감각 신경계를 개발하고, 이를 통해 외부 자극에 효율적으로 대응하는 신개념 로봇 시스템을 증명했다고 15일 밝혔다.
사람을 포함한 동물은 안전하거나 익숙한 자극은 무시하고, 중요한 자극에는 선별적으로 민감하게 반응함으로써, 에너지 낭비를 방지하면서도 중요한 자극에 집중해 민첩하게 외부 변화에 대응할 수 있다.
예를 들면, 여름철 에어컨 소리나 옷이 피부에 닿는 감촉은 곧 익숙해져 신경 쓰지 않게 되지만, 누군가 이름을 부르거나 날카로운 물체가 피부에 닿으면 재빠르게 집중하고 대응한다.
이는 감각 신경계에서의 ‘습관화’ 그리고 ‘민감화’기능에 의해서 조절됨을 보여주며, 사람처럼 효율적으로 외부 환경에 대응하는 로봇 구현을 위해, 이러한 생명체의 감각 신경계 기능을 로봇에 적용하려는 시도가 꾸준히 진행돼왔다.
그러나, 습관화나 민감화와 같은 복잡한 신경 특성을 로봇에 구현하기 위해선 별도 소프트웨어가 필요하거나, 복잡한 회로가 필요해 소형화와 에너지 효율 측면에서의 어려움이 있었다.
특히 뉴로모픽 반도체인 멤리스터(memristor)1 소자를 활용하는 시도도 있었지만, 기존 멤리스터는 단순한 전도도 변화만 가능해 신경계의 복잡한 특성을 모사하는 데 한계가 있었다.
1멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자
이러한 한계를 극복하기 위해 연구팀은 하나의 멤리스터 소자 안에 서로 반대 방향으로 전도도를 변화시키는 층을 형성해, 실제 감각 신경계에서처럼 습관화와 민감화 등의 기능을 모사할 수 있는 새로운 멤리스터를 개발했다.
이 소자는 자극이 반복되면 점차 반응이 줄어들다가, 위험 신호가 감지되면 다시 민감하게 반응하는 등, 실제 신경계의 복잡한 시냅스 반응 패턴을 사실적으로 재현할 수 있다.
연구팀은 이 멤리스터를 이용해 촉각과 고통을 인식하는 멤리스터 기반 인공 감각 신경계를 제작하고, 이를 실제 로봇 손에 적용해 그 효율성을 실험했다.
반복적으로 안전한 촉각 자극을 가하자, 처음에는 낯선 촉각 자극에 민감하게 반응하던 로봇 손이 점차 자극을 무시하는 습관화 특성을 보였고, 이후 전기 충격과 함께 자극을 가했을 때는 이를 위험 신호로 인식해 다시 민감하게 반응하는 민감화 특성도 확인됐다.
이를 통해, 별도의 복잡한 소프트웨어나 프로세서 없이도 로봇이 사람처럼 효율적으로 자극에 대응할 수 있음을 실험적으로 입증하며, 에너지 측면에서 효율적인 신경계 모사 로봇(neuro-inspired robot)의 개발 가능성을 검증했다.
박시온 연구원은 “사람의 감각 신경계를 차세대 반도체로 모사해, 더 똑똑하고 에너지 측면에서 효율적으로 외부 환경에 대응하는 신개념 로봇 구현의 가능성을 열었다”라며, “앞으로 초소형 로봇, 군용 로봇, 로봇 의수 같은 의료용 로봇 등 차세대 반도체와 로보틱스의 여러 융합 분야에서 활용될 것으로 기대된다”고 밝혔다.
이번 연구는 박시온 석박통합과정 연구원이 제 1저자로 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 지난 7월 1일 자로 온라인 게재됐다.
※ 논문 제목: Experimental demonstration of third-order memristor-based artificial sensory nervous system for neuro-inspired robotics
※ DOI: https://doi.org/10.1038/s41467-025-60818-x
이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 중견연구사업, PIM인공지능반도체핵심기술개발사업, 우수신진연구사업, 그리고 나노종합기술원의 나노메디컬 디바이스 사업의 지원을 받아 수행됐다.
2025.07.15
조회수 958
-
‘슝’ 스스로 움직이는 생명체 세포로봇 개발
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다.
우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다.
*요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함
연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질을 운반하거나 주변 환경 제어 기능을 탑재할 수 있는 다기능성 플랫폼으로 설계됐다.
연구팀은 쉽고 안정적으로 얻을 수 있는 생명체이면서 부산물로 생성된 에탄올 활용 가능성이 있고, 인공적인 복잡한 외부 장치 없이 생명체 스스로 만들어내는 물질을 활용할 수 있는 ‘효모’에 주목했다.
제빵과 막걸리 발효에 사용되는 효모(이스트, yeast)는 포도당을 분해해 에너지를 얻는 대사 과정에서 알코올(에탄올)을 부산물로 생성하는데, 연구팀은 이때 생성된 에탄올을 활용해 효모 표면에 생체친화적인 방식으로 나노 껍질을 형성할 수 있는 원천기술을 개발했다.
이를 위해, 알코올산화효소(AOx)와 겨자무과산화효소(HRP)로 구성된 효소 시스템을 도입했다. 이 효소 시스템은 효모의 포도당 분해 반응과 연계된 연쇄적 효소 반응을 유도하며, 그 결과로 멜라닌 계열의 나노껍질이 효모 표면에 형성된다.
특히, 이번에 개발된 화학적 방법론은 효모가 성장하고 분열하는 동안에도 나노껍질 형성이 지속적으로 일어나도록 설계돼 있어서, 세포의 형태 변화에 따라 비대칭적인 세포-껍질 구조가 자연스럽게 생성된다.
예를 들어, 분열 중인 세포 전체를 감싸는 껍질이 형성되기도 하지만, 모세포 부분에는 껍질이 생성되고 딸세포 부분에는 형성되지 않는 구조도 만들어진다.
연구팀은 세포를 감싸는 나노껍질에 우레아제(urease)*를 부착하고 세포로봇의 움직임을 관찰했다. 우레아제는 요소를 분해하는 촉매 역할을 하며 세포로봇이 스스로 움직일 수 있도록 구동력을 만들어내는 핵심 역할을 수행하며 비대칭 구조를 가진 세포로봇이 보다 명확한 방향성을 갖고 자가 추진하는 현상을 확인했다.
*우레아제(urease): 요소를 분해해 암모니아와 이산화탄소를 만드는 효소
이번에 개발된 세포로봇은 세포 주위에 존재하는 물질만으로 자가 추진이 가능하고, 자석이나 레이저 등 복잡한 외부 제어 장치에 의존하지 않아 구동 메커니즘이 훨씬 간단하고 생체친화적이다. 또한, 나노껍질에 다양한 효소를 화학적으로 접합할 수 있어, 다양한 생체 물질을 연료로 활용하는 세포로봇의 확장 개발도 가능하다.
이번 연구의 제1 저자인 화학과 김나영 박사과정은 “자가 추진 세포로봇은 스스로 환경을 감지하고 반응하며 움직이는 능력을 지닌 새로운 개념의 플랫폼으로, 향후 암세포 표적 치료나 정밀 약물전달시스템 등에서 중요한 역할을 할 수 있을 것”이라고 말했다.
이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’에 지난 6월 25일 오후 2시(미국 동부시각) 온라인판에 게재됐다.
※ 논문명 : Autonomous Chemo-Metabolic Construction of Anisotropic Cell-in-Shell Nanobiohybrids in Enzyme-Powered Cell Microrobots; 국문 번역 : 효소 구동 세포 마이크로로봇 구축에서의 자율적인 화학-대사 반응을 통해 형성된 비등방성 세포내껍질 나노바이오하이브리드
※ DOI: https://doi.org/10.1126/sciadv.adu5451
한편, 이번 연구는 한국연구재단 기초연구사업 중견연구과제(제목: 세포대사 연계형 단일세포나노피포화)의 지원을 받아 수행됐다.
2025.06.30
조회수 2156
-
유지환 교수, 세계적인 IEEE 로봇저널 최우수 논문상 수상
우리 대학 건설및환경공학과 유지환 교수가 5월 22일 미국 애틀랜타에서 열린 세계적인 로봇 학회인 ‘2025 IEEE 국제 로봇 및 자동화 학회(ICRA)’에서, 미국전기전자학회(IEEE) 산하 로봇 프리미어 저널 ‘로봇 및 자동화 레터(Robotics and Automation Letters, RA-L)’의 2024 최우수 논문상(Best Paper Award)을 수상했다.
이번 최우수 논문상은 2024년도에 출판된 약 1,500편의 논문 중 상위 5편에만 수여되는 영예로운 상으로, 국제적으로도 높은 경쟁률과 권위를 자랑한다.
유 교수가 수상한 논문은, 식물의 뿌리처럼 자라나는 동작(growing motion)을 통해 이동하거나 작업을 수행하는 연성재료(soft material) 기반의 ‘소프트 그로잉 로봇(Soft Growing Robot)’의 실용성과 응용 가능성을 획기적으로 확장할 수 있는 새로운 작업 채널 확보 기술을 제안했다.
기존 소프트 그로잉 로봇은 내부 압력을 높이거나 낮추어 몸체를 부풀리거나 수축시키는 방식으로 움직이기 때문에 내부통로가 압력에 의해 막히는 현상이 발생한다. 반면, 이번에 개발된 소프트 그로잉 로봇은 내부통로의 압력을 외부 대기압과 동일하게 유지한 채로 자라나는 기능을 구현함으로써, 로봇의 유연하고 부드러운 특성을 그대로 유지한채 내부통로를 확보하는 데 성공했다.
이러한 구조는 로봇 내부에 위치한 통로(작업 채널)를 통해 다양한 재료나 도구를 자유롭게 전달할 수 있게 하며, 작업 환경에 따라 장비를 유연하게 교체함으로써 다목적 작업 수행이 가능하다는 장점을 가진다.
연구팀은 본 기술의 효과를 입증하기 위해 프로토타입을 제작하고, 다양한 실험을 통해 성능을 검증했다. 특히, 슬라이드 플레이트 실험에서는 로봇 내부 채널에 재료나 장비가 방해 없이 통과할 수 있는지, 파이프 당기기 실험에서는 긴 파이프 형태의 도구를 내부 채널을 통해 끌어낼 수 있는지 확인했다.
실험 결과, 로봇이 자라나는 도중에도 내부 채널이 안정적으로 유지되는 것이 입증되었으며, 이는 기술의 실용성과 확장성을 뒷받침하는 핵심 근거로 작용한다.
유지환 교수는 “이번 수상은 국내 로봇공학 기술력과 학문적 성과가 세계적으로 인정받았다는 점에서 매우 뜻깊다”며, “특히, 소프트 그로잉 로봇의 실용성과 응용 분야를 크게 확장할 수 있는 기술적 진전을 이뤘다는 데 큰 의의가 있다. 연구팀의 헌신과 협력이 있었기에 가능했던 성과이며, 앞으로도 혁신적인 연구를 통해 로봇 기술의 발전에 기여하겠다”고 소감을 밝혔다.
본 연구는 건설및환경공학과 서동오 박사과정 학생과 로봇학제전공 김남균 박사과정 학생이 공동저자로 참여했고 로봇 및 자동화 레터저널에 2024년 9월 1일자로 게재했다.
(논문 제목: Inflatable-Structure-Based Working-Channel Securing Mechanism for Soft Growing Robots, DOI: 10.1109/LRA.2024.3426322)
한편 이번 과제는 한국연구재단의 미래유망융합기술파이오니어 연구과제및 중견연구과제를 동시에 지원받았다.
2025.06.09
조회수 1740
-
건설재료의 성능 평가를 위한 실험 자동화 시스템 개발
빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시
우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다.
건설재료 품질관리의 도전과제
콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다.
김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한 작은 수의 샘플을 사용하여 현장에서 불량 레미콘 등의 문제가 종종 발생하고 있습니다"라고 설명했다.
혁신적인 자동화 실험 시스템
연구팀이 개발한 자동화 실험 시스템은 230mL 모르타르 샘플의 레올로지 특성을 정밀하게 측정할 수 있다. 이 시스템은 시료 준비, 재료 혼합, 레올로지 측정 등의 과정을 모두 자동화하여 인력 투입 없이도 정확하고 일관된 데이터를 생산할 수 있다.
연구팀은 이 시스템을 사용해 130개의 모르타르 샘플을 분석하여 시멘트 분산제의 효과를 포괄적으로 특성화했다. 주성분 분석(PCA)을 통해 토크 측정값의 뚜렷한 패턴을 발견했으며, 이를 통해 패턴의 분산을 설명하고 분산제 성능 차이를 효과적으로 포착할 수 있었다.
특히 이 자동화 시스템은 7%의 변동 계수로 우수한 재현성을 달성했으며, 이는 재료의 고유한 변동성으로 간주될 수 있다. 또한 관찰 기반 학습을 통해 시스템의 유용성을 확장하여 유동성과 블리딩 속도를 성공적으로 예측할 수 있었다. 이 내용은 건설공학 분야에서 권위 있는 학술지인 Cement and Concrete Research에 "Automated experimentation for evaluating cement dispersant performance"라는 제목으로 게재되었다.
(https://doi.org/10.1016/j.cemconres.2025.107895)
연구 결과 및 향후 계획
연구 결과는 3세대 시멘트 분산제의 우수한 성능을 확인하는 동시에, 분산제 사용량-레올로지 관계에 대한 통합적인 분석을 제시하였다. 이러한 자동화 실험 방식은 시멘트 기반 재료의 더 효율적이고 포괄적인 평가를 위한 프레임워크를 확립했다는 데 의의가 있다. 김재홍 교수는 "이번 연구에서 개발한 자동화 실험 시스템은 단순히 실험 과정을 자동화하는 것을 넘어, 데이터 사이언스와 머신러닝을 통합하여 건설재료의 품질관리 패러다임을 변화시킬 수 있는 잠재력을 가지고 있습니다"라고 강조했다.
한편, 연구팀은 건설재료의 성능 평가를 위한 자동화 실험 시스템 개발에 앞서, 건설재료의 특성에 적합한 머신러닝 알고리즘을 개발하였다. KAIST 건설및환경공학과/데이터사이언스대학원 강인국 박사과정이 제1저자로 참여한 관찰 기반 학습(observation-based learning), 도메인 적응(domain adaptation) 학습 알고리즘 등에 관한 연구는, 건설공학 분야에서 권위 있는 학술지인 Cement & Concrete Composites 등에 게재되었다.
(https://doi.org/10.1016/j.cemconcomp.2025.105943, https://doi.org/10.1016/j.conbuildmat.2023.133811).
연구팀은 앞으로 이 자동화 시스템을 확장하여 시멘트 분산제 성능 평가뿐만 아니라 강도 발현, 수화열, 내구성 등 다양한 콘크리트 성능 지표에 대한 자동화 실험을 수행할 계획이다. 또한 해외건설 및 국내건설 현장의 건설재료 변동성으로 인한 시공실패를 사전에 예측하고 방지하기 위한 성능평가 실험 자동화 및 로봇 플랫폼을 확장 구축할 예정이다.
김 교수는 "궁극적으로 우리의 목표는 건설산업에서 전문 테크니션 부족 문제, 기능인력 노령화 문제, 주52시간제 시행 등에 대응하기 위한 건설재료 품질관리 및 성능평가의 완전한 자동화 시스템을 구축하는 것입니다. 이를 통해 데이터 기반의 의사결정이 가능한 스마트 건설 환경을 조성하고자 합니다"라고 밝혔다.
이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었다.
2025.04.14
조회수 2964
-
‘로봇스케치’ 도쿄 데뷔, 최우수 심사위원상 수상
VR 헤드셋을 쓴 디자이너(산업디자인학과 이준협 박사)가 태블릿과 펜으로 아무 것도 없는 가상 공간 속에서 유려한 입체 형태와 복잡한 관절 구조를 가지는 4족 거미 로봇을 단 몇 분 만에 그려서 완성했다. 디자이너가 컨트롤러를 조작하자 움직이던 거미 로봇이 일어나 2족 휴머노이드 로봇으로 자세를 수정하고 두 발을 짚고 걸음을 내딛기 시작했다. (2024 시그래프 아시아 리얼타임 라이브의 KAIST 로봇스케치 시연 장면)
우리 대학 12월 6일 도쿄 국제 포럼에서 열린 ‘시그래프 아시아 2024’의 하이라이트인 리얼타임 라이브(Real-Time Live!)에서 산업디자인학과 배석형 교수팀이 기계공학과 황보제민 교수팀과 협업하여 개발한 ‘로봇스케치(RobostSketch)’ 기술이 최우수 심사위원상(Jury’s Choice)을 수상했다고 9일 밝혔다.
‘시그래프 리얼타임 라이브’는 컴퓨터 그래픽스 및 상호작용 분야에서 ‘꿈의 무대’로 알려져 있다. 매년 전 세계에서 엄선된 10여 개의 혁신적인 기술만이 무대에 오른다.
모든 시연은 사전 녹화 없이 실시간으로 이루어지며, 6분이라는 제한된 시간 안에 기술의 독창성과 가능성을 선보여야 한다. KAIST의 로봇스케치는 이러한 무대에서 새로운 로봇 디자인 프로세스의 가능성을 보이며 큰 주목을 받았으며, 단 하나의 기술에만 수여되는 최우수 심사위원상을 수상했다.
로봇스케치는 단순히 외형과 구조를 시각적으로 표현하는 설계 도구를 넘어, 3D 스케칭에 생성형 AI와 몰입형 VR을 접목해 로봇 디자인의 개념을 새롭게 정의한 혁신적 기술이다.
디자이너는 VR 환경에서 태블릿과 펜을 사용해 복잡한 관절형 구조를 직관적으로 표현하고, 이를 실제 크기로 확인할 수 있다. 디자이너가 그린 로봇은 강화학습을 통해 현실 세계의 물리 법칙을 따르는 시뮬레이션 속에서 보행법과 움직임을 학습한다.
이를 통해 디자이너는 실제 세계에서 작동 가능한 로봇 디자인을 VR 공간 안에서 만들고, 로봇을 직접 움직이며 로봇이 가질 동작의 자연스러움과 안정성을 실시간으로 확인할 수 있다.
로봇스케치는 3D 스케칭 전문가인 산업디자인학과 배석형 교수 연구팀과 로봇 강화학습 전문가인 기계공학과 황보제민 교수 연구팀의 협업으로 완성됐다.
배석형 교수는 “기존 로봇 디자인의 한계를 극복하고, 로봇 디자이너가 상상하는 모든 것을 실시간으로 표현할 수 있는 도구를 만들고 싶었다”고 밝혔다.
이어 “로봇 디자인은 단순히 외형뿐 아니라 로봇의 움직임과 기능, 더 나아가 사용자와의 상호작용까지 모두 포함하는 과정이며 로봇 디자이너와 로봇 엔지니어의 원활한 소통을 촉진하고 현실 프로토타이핑에 소모되는 시간과 비용을 크게 줄일 수 있는 로봇스케치는 앞으로 로봇 개발과 제품화 과정에서 중요한 도구가 될 것”이라고 덧붙였다.
이 연구는 ‘DRB-KAIST 스케치더퓨처 연구센터’의 지원 아래 이루어진 결과로, 해당 센터는 3D 스케칭, AI, VR 기술을 결합해 전문가의 창의성과 생산성을 극대화하는 도구를 연구하며 첨단 기술과 디자인의 융합 가능성을 탐구하고 있다. 앞으로 로봇 디자인뿐 아니라 미래 산업 전반에서 고도화된 디자인 도구의 발전이 기대된다.
ACM SIGGRAPH Asia 2024 리얼타임 라이브 <로봇 스케치> 시연 영상: https://youtu.be/5wi53Z2_sAk
2024.12.09
조회수 6090
-
라이보2, 4족보행 로봇 세계최초 마라톤 풀코스 완주 성공
해변을 거침없이 달리던 4족보행 로봇 ‘라이보’가 ‘라이보2’로 새롭게 개발되어 일반 마라톤 대회에 참가하고 완주를 성공한 세계 최초의 성과가 나왔다.
우리 대학 기계공학과 황보제민 교수 연구팀이 17일 상주에서 개최된 제22회 상주 곶감 마라톤 대회 풀코스(42.195km)에 참가해 4시간 19분 52초의 기록으로 완주했다고 17일 밝혔다.
상주 곶감 마라톤은 14km 지점과 28km 지점에 고도 50m 수준의 언덕이 2회 반복되는 코스로, 아마추어 마라토너들에게도 난이도가 높은 것으로 알려져 있어 보행 로봇에게는 예상치 못한 손실이 발생할 수 있는 도전적인 과제였다.
연구팀은 황보 교수가 자체 개발한 ‘라이심(Raisim)’ 시뮬레이션 환경에서 경사, 계단, 빙판길 등 다양한 환경을 구축하여 안정적인 보행이 가능하도록 강화학습 알고리즘을 통해 보행 제어기를 개발했다.
특히, 힘 투명성이 높은 관절 메커니즘을 통해 내리막길에서 에너지를 높은 효율로 충전하여 급격한 언덕을 오르는 데 사용한 에너지를 일부 흡수할 수 있었다.
또한, 황보 교수 연구실에서 창업한 ‘㈜라이온로보틱스’와의 공동 개발을 통해 로봇의 안정성을 높이는 데 주요한 역할을 했다.
보행 로봇은 보행 특성상 지면 접촉 시 발생하는 충격으로 인한 주기적인 진동에도 견딜 수 있어야 하는 고난도 시스템이다. 개발 직후, 실험실 내 짧은 거리 실험에서는 연초에 이미 높은 효율을 기록했으나, 실제 마라톤에서 사람들 사이에서 안전하게 4시간 이상 달리기까지는 ‘(주)라이온로보틱스’의 제조 기술이 큰 역할을 했다.
기존 보행 효율 향상 연구들은 외부 부품이나 소프트웨어를 사용한 부분은 변경할 수 없어 일부 부분만 제한적으로 개선하는 연구가 진행되었던 점에 비해, 황보 교수 연구진은 기구 설계, 전장 설계, 소프트웨어, 인공지능까지 모든 영역을 자체 개발하여 복합적으로 문제를 해결할 수 있었던 점을 효율 향상의 핵심 요인으로 꼽았다.
연구진은 라이보1 개발에 이어 라이보2를 새롭게 개발하며 모든 영역을 최적화했고, 특히 모터 드라이버 회로를 내재화하며 구동기 손실을 최소화하고 제어 대역폭을 높여 보행 효율과 안정성을 크게 향상시켰다.
이충인 공동 제1 저자(박사과정)는 “마라톤 프로젝트를 통해 도심 환경에서 라이보2가 안정적으로 배달, 순찰 등의 서비스를 수행할 수 있는 보행 성능을 갖추었음을 보였다”며 “후속 연구로는 라이보의 자율주행 기능을 추가하면서 산악, 재난환경에서도 세계 최고 보행 성능을 달성하기 위해 노력할 것”이라고 향후 연구 계획을 밝혔다.
한편, 이번 연구는 삼성전자 미래기술육성센터와 ㈜라이온로보틱스의 지원으로 수행됐다.
2024.11.18
조회수 6549
-
해변 달리던 라이보, 이번에는 마라톤이다!
모래사장 같은 변형하는 지형에서도 민첩하게 보행하던 KAIST 4족 보행 로봇 ‘라이보’가 이번에는 세계 최초로 마라톤 풀코스 완주에 도전한다.
우리 대학 기계공학과 황보제민 교수 연구팀이 새롭게 개발한 사족보행 로봇 '라이보 2'가 11월 17일 오전 9시 상주시민운동장에서 열리는 2024 상주곶감마라톤 풀코스(42.195km) 완주에 도전할 것이라고 15일 밝혔다.
기존 사족보행 로봇의 최장 주행거리가 20km에 그쳤던 것과 비교하면 두 배가 넘는 거리다. 우리 연구진은 1회 충전으로 43km 연속 보행이 가능한 로봇을 개발하였고 교내 대운동장에서 저장된 GPS 경로를 따라 보행하는 방식으로 4시간 40분에 걸쳐 완주하는데 성공했다. 더 나아가 연구팀은 이번 마라톤 참여를 통해 실제 도심 환경 속에서 보행 성능을 입증할 예정이다.
그동안 보행 로봇의 주행거리는 대부분 실험실 내 통제된 환경에서 측정되거나 이론상의 수치에 그쳐왔다. 이번 도전은 실제 도심 환경에서 일반인들과 함께 달리며 기록을 측정한다는 점에서 의미가 크다. 사족보행 로봇의 실용화 가능성을 실제 환경에서 검증하는 첫 시도가 될 전망이다.
사족보행 로봇은 얼음, 모래, 산악 지형 등 험지에서도 안정적인 보행이 가능하다는 장점이 있지만, 짧은 주행거리와 운용 시간이 한계로 지적되어 왔다.
황보 교수팀은 이러한 한계를 극복하기 위해 로봇의 구동기부터 기계적 메커니즘까지 모든 것을 자체적으로 설계했다. 특히 자체 개발한 동역학 시뮬레이터 '라이심(Raisim)'을 통해 강화학습 기반의 효율적인 보행 제어 기술을 구현했다.
연구팀은 또한 실제 야외 환경에서의 보행 데이터를 수집·분석해 보행 손실 모델을 수립하고, 이를 다시 시뮬레이션에 반영하는 방식으로 1년여간 보행 효율을 단계적으로 끌어올렸다.
이번이 연구팀의 두 번째 도전이다. 지난 9월 ‘금산인삼축제 마라톤대회’에서 첫 도전을 했으나 37km 지점에서 배터리 방전으로 완주에 실패했다. 실험실 예상보다 10km 일찍 배터리가 소진된 것이다. 연구진은 실제 마라톤 코스에서 다른 주자들과 어울려 달리다 보니 일정한 속도를 유지하지 못하고 잦은 가감속이 발생한 점을 원인으로 분석했다.
이후 연구팀은 완주를 위한 기술적 보완에 주력했다. PC에서 수행하던 관절 강성 제어를 모터 구동기에 직접 구현해 제어 효율을 높였고, 내부 구조를 개선해 배터리 용량도 33% 늘렸다. 이러한 개선으로 현재 직선 구간 기준 최대 67km 주행이 가능해졌다.
이충인 공동 제1 저자(박사과정)는 “보행 손실을 기구, 전장, 보행 방법 측면에서 종합적으로 분석할 수 있었던 것이 보행 효율을 개선하는데 주요하게 작용했다”며 “이번 연구 성과는 사족보행 로봇의 운용 범위를 도시 범위로 확대하는데 중요한 기점이 될 것”이라고 설명했다.
한편, 이번 연구는 삼성전자 미래기술 육성센터와 ㈜라이온 로보틱스의 지원을 받아 수행됐다.
2024.11.15
조회수 4385
-
KAIST, 국제사이보그올림픽 2연패, 세계 최고 아이언맨 재탄생
우리 연구진이 로봇 기술로 장애를 극복하자는 취지의 사이배슬론 국제대회에서 2016년 제1회 대회 동메달, 2020년 제2회 대회 금메달에 이어 제3회 대회인 2024년 대회에서 우승을 거머쥐며 디펜딩 챔피언의 타이틀을 지켜냈다.
우리 대학 기계공학과 공경철 교수(㈜엔젤로보틱스 의장)가 이끄는 엑소랩(EXO-Lab)과 무브랩(Move Lab), ㈜엔젤로보틱스 공동 연구팀이 개발한 하반신마비 장애인을 위한 웨어러블 로봇 ‘워크온슈트F1’으로, 27일에 열린 제3회 사이배슬론(Cybathlon)에 출전하여 우승을 차지했다고 28일 밝혔다.
사이배슬론은 로봇 기술로 장애를 극복하자는 취지로 스위스에서 처음 개최된 국제대회로, 일명 사이보그 올림픽이라 불린다. 매번 대회를 마친 후 바로 다음 대회의 미션들이 발표되고, 전 세계 연구팀들이 주어진 미션을 통과하기 위하여 4년여 동안 로봇 기술을 연구 개발한다.
웨어러블 로봇 종목 뿐만 아니라, 로봇 의수, 로봇 의족, 로봇 휠체어 등 8가지 종목이 열린다. 이번 제3회 사이배슬론 대회에는 총 26개 국가에서 71개 팀이 참가했다. 공경철 교수 연구팀은 지난 대회와 마찬가지로 웨어러블 로봇 종목에 참가했다.
웨어러블 로봇 종목은 사이배슬론의 핵심이라고 부를 만큼 하이라이트를 받는 종목이다. 의수나 의족 종목에서는 로봇이 아닌 고전적인 보조기를 착용한 장애인 선수가 우승을 하는 등, 로봇 기술보다 장애인 선수의 능력이 더 중요하게 작용하는 경우가 많다.
하지만 웨어러블 로봇 종목은 하반신 완전마비 장애인이 로봇에 완전히 의존하여 직접 걸으면서 다양한 미션을 수행해야 하는 만큼, 기술적 난이도도 높고 로봇 기술에 대한 의존도 또한 높다.
실제로 이번 대회의 미션을 보고 많은 팀이 출전을 포기했고, 기술 개발 과정에서도 반 이상의 연구팀들이 포기를 선언했다. 결국, 실제 경기에는 한국, 스위스, 독일, 네덜란드 등의 총 6팀만이 참가했다. 스위스 본진의 연구팀마저 포기를 선언했다.
이번 대회에서 특히 웨어러블 로봇 종목에 중도 포기한 팀이 많이 발생한 이유는 유난히 미션의 난이도가 높았기 때문이다. 대부분의 연구팀들이 하반신마비 장애인을 일으켜 걷는 것도 버거운 수준의 기술을 갖고 있는데, 지팡이 없이 걷도록 한다거나, 양손을 사용하여 칼질을 해야 하는 등 무리한 미션이 많이 등장했기 때문이다.
이렇게 미션의 난이도가 올라간 이유는 지난 대회 때 공 교수 연구팀이 주어진 모든 미션을 너무 빠르게 완수했기 때문이다. 실제로 지난 대회에서는 워크온슈트4를 착용한 김병욱 선수(하반신마비 장애인)에게 진짜 장애인이 맞느냐는 질문이 나오기도 했다.
공 교수 연구팀은 미션들을 성공적으로 수행하기 위하여 워크온슈트F1을 개발해냈다. 모터가 장착된 관절이 6개에서 12개로 늘었고, 모터의 출력 자체도 지난 대회보다 2배 이상 출력이 강화되었다. 발에 있는 6채널 지면반력 센서는 로봇의 균형을 1초에 천 번 측정하여 균형을 유지시키도록 하였다. 장애물을 감지하기 위하여 카메라를 설치하였고 인공지능 신경망 구현을 위한 AI 보드도 탑재시켰다.
그리고 대회 미션과는 관계 없이, 착용자 스스로 로봇을 착용할 수 있도록 스스로 걸어와 휠체어에서 도킹할 수 있는 기능을 구현하였다. 이 과정에서 모든 부품을 국산화했고, 모든 기초기술을 내재화했다. 로봇의 디자인은 우리 대학 산업디자인학과 박현준 교수가 맡아 사람과 로봇의 조화를 추구했다.
결국, 대회의 결과는 예상대로였다. 애초에 공 교수 연구팀을 겨냥해 만들어진 미션들을 수행할 수 있는 팀은 공 교수 연구팀 밖에 없었다. 좁은 의자 사이로 옆걸음, 박스 옮기기, 지팡이 없는 자유 보행, 문 통과하기, 주방에서 음식 다루기 등의 미션들을 6분 41초 기록으로 성공했다.
2위, 3위를 차지한 스위스와 태국 팀들은 10분을 모두 사용하면서도 2개 미션을 수행하는데 그쳤다. 애초에 적수가 되지 않는 경기였다. 사이배슬론 중계진도 경쟁보다는 워크온슈트F1의 성능에 더 큰 놀라움과 관심을 보였다.
이번 Team KAIST의 주장인 박정수 연구원은 “애초에 우리 스스로와의 경쟁이라 생각하고 기술적 초격차를 보여주는 것에 집중했는데, 좋은 결과까지 따라와서 매우 기쁘고 자랑스럽다”며, “아직 공개하지 않은 워크온슈트F1의 다양한 기능을 계속해서 공개할 예정”이라고 밝혔다.
팀의 하반신마비 장애인 선수인 김승환 연구원은 “세계 최고인 대한민국의 웨어러블 로봇 기술을 내 몸으로 알릴 수 있어서 너무나 감격스럽다”라며 소감을 밝혔다.
한편, 공 교수 연구팀은 지난 2020년 대회 이후로 ㈜엔젤로보틱스를 통하여 웨어러블 로봇을 상용화하는데 성공했다. 2022년에는 의료보험 수가의 적용을 받는 최초의 웨어러블 로봇인 “엔젤렉스M20”을 보급하기 시작했고, 그 결과 ㈜엔젤로보틱스는 지난 3월에 성공적으로 코스닥 상장했다.
이번 대회로 쌓인 다양한 노하우와 기초기술을 바탕으로 또 어떤 웨어러블 로봇이 우리의 일상생활을 바꿀 것인지, 미래가 더 기대된다.
<영상 목록>
결승경기 (자체촬영) : https://youtu.be/3ASAtvkiOhw
결승경기 및 인터뷰 (공식영상) : https://youtu.be/FSfxOTpDjSE
결승경기 및 인터뷰 (요약) : https://youtu.be/Sb_vd5-3f_0
2024.10.28
조회수 6586
-
로봇 제어 최적화 알고리즘에 인간이 필요하다
우리 대학 기계공학과 공경철 교수가 포함된 국제공동연구팀이 로봇의 성능을 최적화하는 과정에 사람을 포함시킴으로써, 인적 요소(Human factor)를 로봇의 제어 알고리즘에 충분히 반영하는 방법인 힐로(HILO, Human-in-the-loop optimization)에 대한 연구를 네이처 본지(IF 50.5)에 발표했다고 4일 밝혔다.
이 논문은 공경철 교수 이외에도 스탠퍼드 대학의 Steven H. Collins(스티븐 콜린스) 교수, 하버드 대학의 Patrick Slade(패트릭 슬래드) 교수 등이 참여했다. HILO 방법의 핵심 연구자들이 모여 이론에 대한 설명과 응용 분야, 발전 방향까지 총망라하였고, 견해(Perspective)를 발표했다.
이 연구를 통해 로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 개발되어야 한다고 밝히고 있다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가오게 할 것이라고 말한다.
로봇은 이제 우리 일상에서 쉽게 만날 수 있으며 인간과 로봇이 서로 복잡하게 상호작용하는 경우가 빈번하게 발생하고 있다. 공장에서 협동 로봇과 사람이 함께 물건을 들어 나르기도 하고, 반자율주행 자동차의 운전자는 제어알고리즘과 동시에 차량을 운전한다.
웨어러블 로봇의 경우에는 로봇과 사람이 함께 하나의 동작을 만들어내는 극단적인 경우이다. 이외에도 사람과 로봇이 어우러져 협동하는 경우는 흔하게 찾아볼 수 있다.
이처럼 로봇이 사람과 복잡한 상호작용을 하게 되면, 로봇의 성능을 원하는 만큼 이끌어내기가 쉽지 않다. 사람마다 서로 다른 행동 특성이 로봇의 동역학적인 특성에 영향을 끼치기 때문이다. 이 경우, 로봇이 사람과 동떨어져 동작하는 것보다는 로봇의 정밀도나 안전성을 확보하는 것이 훨씬 까다로워진다. 우리가 흔히 보는 바리스타 로봇이 유리장 안에 갇혀 있는 이유이기도 하다.
이와 같은 문제를 해결하기 위하여 HILO(Human-in-the-loop optimization) 방법이 제안됐다. 로봇과 사람을 별개의 시스템으로 간주하는 것이 아니라, 하나의 통합된 시스템으로 간주하여 최적화를 진행하는 방식이다.
이를 통해 HILO 방법은 로봇과 사람이 상호작용하는 시스템을 제어함에 있어 ‘개인 맞춤형 자동 최적화’라는 혁신적인 방향성과 가능성을 제시했다.
공경철 교수(KAIST 기계공학과, ㈜엔젤로보틱스 대표이사)는 “연구하고 있는 웨어러블 로봇의 경우에는 인적 요소가 매우 강하게 작용한다. 사람마다 적절한 보행 패턴이 다르고, 같은 장애물이라도 극복하는 방법이 모두 제각각이기 때문이다”라고 말했다. 또한 “㈜엔젤로보틱스에서는 HILO 방법을 이용해 하반신 마비 장애인이 착용한 웨어러블 로봇의 성능을 개인맞춤형으로 최적화했고 앞으로 웨어러블 로봇의 온라인 자동최적화 기능을 상용화할 계획을 갖고 있다”고 강조했다.
실제로 공 교수가 개발해 상용화된 웨어러블 로봇은 사람마다 특성을 다르게 최적화할 수 있도록 알고리즘이 설계되어 있고, 현재 데이터 클라우드를 이용하여 병원-가정-일상에 이르는 다양한 환경에서 자동으로 최적화를 진행할 수 있도록 연구를 진행하고 있다.
로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 튜닝되어야 한다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가올지 기대된다.
한편 HILO에 대한 논문은 2024년 9월 네이쳐 본지(Vol 633, p.779)에 발표됐다.
(논문명 : On human-in-the-loop optimization of human–robot interaction)
2024.10.04
조회수 5020