본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B9%84%ED%95%99%EC%8A%B5
최신순
조회순
‘뻔하지 않은 창의적인 의자’그리는 AI 기술 개발
최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다. 우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다. 최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모델 내부의 얕은 블록들이 창의적 생성에 중요한 역할을 한다는 것을 발견하고, 특징 맵을 주파수 영역으로 변환 후, 높은 주파수 영역에 해당하는 부분의 값을 증폭하면 노이즈나 작게 조각난 색깔 패턴의 형태를 유발하는 것을 확인했다. 이에 따라, 연구팀은 얕은 블록의 낮은 주파수 영역을 증폭함으로써 효과적으로 창의적 생성을 강화할 수 있음을 보였다. 연구팀은 창의성을 정의하는 두 가지 핵심 요소인 독창성과 유용성을 모두 고려해, 생성 모델 내부의 각 블록 별로 최적의 증폭 값을 자동으로 선택하는 알고리즘을 제시했다. 개발된 알고리즘을 통해 사전 학습된 스테이블 디퓨전 모델의 내부 특징 맵을 적절히 증폭해 추가적인 분류 데이터나 학습 없이 창의적 생성을 강화할 수 있었다. 연구팀은 개발된 알고리즘을 사용하면 기존 모델 대비 더욱 참신하면서도 유용성이 크게 저하되지 않은 이미지를 생성할 수 있음을 다양한 측정치를 활용해 정량적으로 입증했다. 특히, 스테이블 디퓨전 XL(SDXL) 모델의 이미지 생성 속도를 대폭 향상하기 위해 개발된 SDXL-Turbo 모델에서 발생하는 모드 붕괴 문제를 완화함으로써 이미지 다양성이 증가한 것을 확인했다. 나아가, 사용자 연구를 통해 사람이 직접 평가했을 때도 기존 방법에 비해 유용성 대비 참신성이 크게 향상됨을 입증했다. 공동 제1 저자인 KAIST 한지연, 권다희 박사과정은 "생성 모델을 새로 학습하거나 미세조정 학습하지 않고 생성 모델의 창의적인 생성을 강화하는 최초의 방법론ˮ이라며 "학습된 인공지능 생성 모델 내부에 잠재된 창의성을 특징 맵 조작을 통해 강화할 수 있음을 보였다ˮ 라고 말했다. 이어 “이번 연구는 기존 학습된 모델에서도 텍스트만으로 창의적 이미지를 손쉽게 생성할 수 있게 됐으며, 이를 통해 창의적인 상품 디자인 등 다양한 분야에서 새로운 영감을 제공하고, 인공지능 모델이 창의적 생태계에서 실질적으로 유용하게 활용될 수 있도록 기여할 것으로 기대된다”라고 밝혔다. KAIST 김재철AI대학원 한지연 박사과정과 권다희 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)’에서 6월 15일 발표됐다. ※논문명 : Enhancing Creative Generation on Stable Diffusion-based Models ※DOI: https://doi.org/10.48550/arXiv.2503.23538 한편 이번 연구는 KAIST-네이버 초창의적 AI 연구센터, 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능, AI 연구거점 프로젝트, 점차 강화되고 있는 윤리 정책에 발맞춰 유연하게 진화하는 인공지능 기술 개발 연구 및 KAIST 인공지능 대학원 프로그램과제의 지원을 받았고 방위사업청과 국방과학연구소의 지원으로 KAIST 미래 국방 인공지능 특화연구센터에서 수행됐다.
2025.06.19
조회수 611
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1