본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%9C%EA%B3%84%EC%97%B4
최신순
조회순
뇌처럼 생각·반응하는 반도체 나왔다
뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다. 우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다. * 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델 현재의 컴퓨터는 동영상과 같이 시간 흐름에 따라 변하는 데이터인 시계열 데이터를 분석하는데 복잡한 알고리즘을 사용하며, 이는 매우 많은 시간과 전력 소모를 필요로 했다. 김경민 교수 연구팀은 이러한 난제를 해결하며 뇌 속 뉴런처럼 흥분하거나 억제되는 반응을 전기 신호만으로 동시에 구현하여 시계열 데이터의 정보 처리에 특화된 단일 반도체 소자를 새롭게 설계했다. 해당 소자는 산화 티타늄(TiO2)과 산화 알루미늄(Al2O3)이라는 두 산화물층을 쌓아 만든 구조로, 두 층이 맞닿는 계면에서는 전자가 자유롭게 빠르게 이동하는 이차원 전자가스(2DEG)** 층이 형성된다. 그리고, 이 층의 양 끝에는 흥분성 및 억제성 신호에 모두 반응하는 뉴런형 소자가 연결되어 있다. **2DEG(Two-Dimensional Electron Gas): 계면에서 전도성이 우수한 전자 층이 형성되는 현상으로, 높은 이동도와 빠른 응답속도를 제공함 이러한 독특한 구조 덕분에 뉴랜지스터는 게이트 전압의 극성에 따라 소스와 드레인 간에 흥분성(EPSP) 또는 억제성(IPSP) 반응을 선택적으로 구현할 수 있다. 이 소자는 또한 기존 LSM 구현에서 필수적이었던 복잡한 입력 신호 전처리 과정(마스킹)도 간단히 해결했다. 기존에는 '마스킹' 기능 구현이 매우 복잡했으나, 뉴랜지스터는 소스 전극에 가해지는 전압을 조절함으로써 간단하게 마스킹 기능을 구현하고, 시계열 입력 신호를 다차원의 출력 정보로 정확하게 변환하였다. 또한, 높은 내구성과 소자 간의 균일성도 확보해 실용성도 역시 뛰어났다. 연구팀은 뉴랜지스터를 기반으로 복잡한 시계열 데이터를 처리하는 ‘두뇌형 정보처리 시스템’인 LSM을 구현하였다. 실험 결과, 뉴랜지스터를 활용하는 경우 기존의 방식보다 10배 이상 낮은 오차율과 높은 예측 정확도를 기록했고, 학습 속도도 더 빨라졌다. 김경민 교수는 “이번 연구는 인간 뇌의 신호 처리 방식과 유사한 구조를 실제 반도체 소자로 구현했다는 데 큰 의의가 있다”며 “이 기술은 향후 뇌신경 모사형 AI, 예측 시스템, 혼돈 신호 제어 등 다양한 분야에서 중요한 역할을 할 것으로 기대된다”고 전했다. 이번 연구는 신소재공학과 정운형 박사, 김근영 박사가 공동 제1 저자로 참여했으며, 재료 분야 세계적 권위의 국제 학술지 ‘어드밴스드 머터리얼즈(Advanced Materials, IF: 27.4)’에 2025년 4월 8일 字 게재됐다. (논문명: A Neuransistor with Excitatory and Inhibitory Neuronal Behaviors for Liquid State Machine, DOI: 10.1002/adma.202419122) 한편, 이번 연구는 나노종합기술원, 한국연구재단의 지원을 받아 수행됐다.
2025.04.16
조회수 1038
인과관계 추정 정확도 높인 새로운 방법론 개발
우리 대학 수리과학과 김재경 교수 연구팀이 수학 모델을 기반으로 시계열 데이터의 인과관계를 추정하는 새로운 방법론을 개발했다. 복잡한 계산 과정을 없애 기존보다 빠른 속도로 추론이 가능하면서도, 정확도는 획기적으로 높였다. 매 순간 다양한 데이터가 기록되고 있다. 그중 시간의 흐름을 기준으로 기록된 ‘시계열 데이터’는 일기 예보와 경제 분야뿐만 아니라 의학 분야에서도 가치 있게 쓰인다. 입원 환자의 심전도 측정을 통해 심장 발작의 직접적인 요인을 찾는 것과 같이 인과관계를 추정하는 것이 대표적이다. 최근에는 스마트 워치 등 웨어러블 기기를 통해 일상에서 건강 데이터를 쉽게 수집할 수 있게 되면서, 의학 분야에서 시계열 데이터 분석의 중요성이 더 커지고 있다. 시계열 데이터에서 인과관계를 추정하는 대표적인 방법으로는 2003년 노벨 경제학상을 수상한 클라이브 그레인저 미국 샌디에이고캘리포니아대(UC샌디에이고) 교수가 제시한 ‘그레인저 인과관계 검정(Granger causality test)’이 있다. 이는 미래 경제지표 예측, 질병 요인분석, 지구온난화의 원인 등 수많은 분야에 걸쳐 응용됐다. 그레인저 인과관계 검정을 개선한 정보 이론 기반의 다양한 인과관계 추정 방법이 개발됐지만, 일련의 방법들은 시계열 데이터가 비슷한 주기로 변화하는 동시성을 가지기만 하면, 인과관계가 있다고 잘못 예측하는 경우가 많았다. 또한, 직접적인 인과관계와 간접적인 인과관계를 구별하지 못한다는 한계도 있었다. 이러한 한계를 극복하기 위해 최근 수리 모델을 기반으로 하는 방법론들이 등장했다. 수리 모델로 주어진 시계열 데이터를 잘 맞출 수 있는지 확인하는 방법을 통해 인과관계를 예측한다. 수리 모델이 정확하기만 하면 기존 그레인저 인과관계 검정의 한계인 동시성과 간접적인 영향을 인과관계와 혼동하지 않는다는 장점이 있다. 그러나 정확한 수리 모델을 알기 힘들고, 현재까지 제시된 수리 모델 기반 방법론들은 복잡한 계산이 필요해 추정 시간이 많이 걸린다는 단점이 있다. 이러한 상황에서 연구팀은 기존 방법론들의 한계를 모두 해결한 새로운 방법론 ‘GOBI(General ODE-Based Inference)’를 개발했다. 우선, 연구팀은 시계열 데이터가 일반적인 수학 모델로 표현될 수 있는지 확인하는 수학 이론을 만들었다. 그리고 이 이론을 바탕으로 정확한 수리 모델이나 복잡한 계산 없이도 시계열 데이터로부터 인과관계를 추정하는 방법론을 개발했다. 개발한 방법론을 인과관계 분석에 적용해 본 결과 세포 내 분자들의 상호작용, 생태계 네트워크, 기상 시스템 등 다양한 분야의 데이터에서 기존 방법론에 비해 월등한 성능을 보여줬다. 특히, 동시성 및 간접적인 영향을 가지는 시계열 데이터에서도 인과관계를 성공적으로 추론했다. 연구진은 GOBI를 통해서 여러 오염 물질 중 이산화질소와 호흡기로 유입되는 부유 미립자(직경 10㎛ 이하의 입자)가 심혈관계 질환에 영향을 미친다는 것을 확인할 수 있었다. 김재경 교수는 “수학과 통계를 결합하여 정확하면서도 다양한 시스템에 유연하게 적용할 수 있는 새로운 인과관계 추정 방법론을 개발했다”며 “사회 및 자연과학 분야에 걸쳐 두루 사용되는 인과관계 추정 연구에 새로운 패러다임을 제시할 것으로 예상된다”고 말했다. 연구결과는 7월 24일 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 17.694)’ 온라인판에 실렸으며, 우리 대학 박세호 학사과정(제1저자)과 하석민 학사과정(제2저자)이 참여했다.
2023.07.26
조회수 7203
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1