본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%AC%B8%ED%99%8D%EC%B2%A0
최신순
조회순
빛 공해 제로·열 차감 ‘스마트 윈도우’ 개발..건물·차량 적용 가능
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다. 우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다. 최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다. 연구팀이 개발한 차세대 스마트 윈도우 기술인 RECM (Reversible Electrodeposition and Electrochromic Mirror)은 단일 구조의 *전기변색 소자를 기반으로, 가시광선(빛)과 근적외선(열)의 투과율을 능동적으로 조절할 수 있는 스마트 윈도우 시스템이다. *전기변색 소자: 전기 신호에 따라 광학적 특성이 변하는 특성을 가진 장치 특히, 기존 금속 *증착 방식의 스마트 윈도우에서 문제로 지적돼 온 외부 반사광에 의한 눈부심 현상을 변색 소재를 함께 적용해 효과적으로 억제함으로써, 건물 외벽에 활용 가능한 ‘보행자 친화형 스마트 윈도우’를 구현했다. *증착: 전기화학 반응을 이용해 Ag+와 같은 금속 이온을 전극 표면에 고체 형태로 입히는 과정 이번 연구에서 개발된 RECM 시스템은 전압 조절에 따라 세 가지 모드로 작동된다. 모드 I(투명 모드)는 일반 유리처럼 빛과 열을 모두 통과시켜 겨울철 햇빛을 실내로 유입시키는 데 유리하다. 모드 II(변색 모드)에서는 레독스 반응(산화-환원 반응)을 통해 *프러시안 블루(PB)와 **DHV+⦁ 화학종이 형성되며 창이 짙은 파란 색으로 변한다. 이 상태에서는 빛은 흡수되고 열은 일부만 투과돼, 프라이버시 확보와 동시에 적절한 실내 온도 조절이 가능하다. *프러시안 블루: 전기 자극에 따라 무색과 파란색으로 전환되는 전기변색 물질 **DHV+⦁: 전기 자극 시 생성되는 라디칼 상태의 변색 분자 모드 III(변색 및 증착 모드)는 은(Ag+)이온이 환원 반응을 통해 전극 표면에 증착돼 빛과 열을 반사하는 동시에, 변색 물질이 반사광을 흡수함으로써 외부 보행자의 눈부심까지 효과적으로 차단할 수 있다. 연구팀은 미니어처 모델 하우스를 활용한 실험을 통해 RECM 기술의 실질적인 실내 온도 저감 효과를 검증했다. 일반 유리창을 적용한 경우, 실내 온도는 45분 만에 58.7℃까지 상승했다. 반면, RECM을 모드 III로 작동시킨 결과 31.5℃에 도달해 약 27.2℃의 온도 저감 효과를 나타냈다. 또한, 전기 신호만으로 각 상태 전환이 가능해 계절, 시간, 사용 목적에 따라 즉각적으로 대응할 수 있는 능동형 스마트 기술로 평가받고 있다. 이번 연구의 교신저자인 우리 대학 문홍철 교수는 “이번 연구는 가시광 조절에 국한된 기존 스마트 윈도우 기술에서 더 나아가 능동적 실내 열 제어는 물론 보행자의 시야 안전까지 종합적으로 고려한 진정한 스마트 윈도우 플랫폼을 제시한 것”이라며, “도심 건물부터 차량, 기차 등 다양한 응용 가능성이 기대된다”고 밝혔다. 이번 연구 결과는 에너지 분야 국제 저명 학술지인 ‘에이시에스 에너지 레터스(ACS Energy Letters)’ 10권 6호 지에 2025년 6월 13일 자로 게재됐다. ※ 논문명: Glare-Free, Energy-Efficient Smart Windows: A Pedestrian-Friendly System with Dynamically Tunable Light and Heat Regulation ※ DOI: 10.1021/acsenergylett.5c00637 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 한국기계연구원 기본사업의 지원을 받아 수행됐다.
2025.06.17
조회수 862
1700% 뛰어난 신축성, 고성능 웨어러블 열전소자 개발
열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진행되었지만 N형 열전 소자는 상대적으로 연구가 부족했다. 그마저도 N형 열전 소자는 P형에 비해 성능이 떨어져 통합형 소자 구현 시 성능 밸런스가 맞지 않아 성능 극대화에 걸림돌이 되었다. 이번 연구에서 연구팀은 스스로 산도(pH) 조절이 가능한 젤 소재를 개발하여 이온을 주요 전하운반체로 사용한 이온성 열전 소자 중 한 종류인 열전갈바닉 소자를 구현하였다. 연구팀이 개발한 젤 소재를 활용하여 하이드로퀴논* 레독스 반응**의 열역학적 평형을 효과적으로 제어할 수 있었고, 이를 통하여 고성능의 N형 열전 소자 특성을 구현하였다. *하이드로퀴논: 열 에너지를 전기 에너지로 전환하는데 사용된 전기화학 반응물 **레독스 반응: 산화-환원 반응 또한 개발된 젤 소재는 가역적 가교 결합을 기반으로 약 1700%의 우수한 신축성과 함께, 상온에서도 20분 이내에 99% 이상의 높은 자가회복 성능을 구현할 수 있게 설계되었다. 본 연구에서 개발된 N형 이온성 열전 소자는 4.29 mV K-1의 높은 열전력 (thermopower)을 달성하였으며, 1.05% 의 매우 높은 카르노 상대 효율* (Carnot relative efficiency) 또한 나타내었다. 이러한 우수한 성능을 바탕으로 손목에 부착된 소자는 몸에서 지속적으로 유지되는 체온과 주변 환경의 온도 차이를 이용하여 효과적인 에너지 생산에 성공하였다. *카르노 상대 효율: 이상적인 카르노 기관의 효율 대비 열전갈바닉 소자의 실제 열전환 효율 문홍철 교수는 “이번 연구 성과는 기존 N형 이온성 열전 시스템이 갖고 있던 한계를 극복할 수 있는 기술 개발에 해당한다”며 “이는 체온을 활용한 전원 시스템 실용화를 앞당기고, 웨어러블 소자 구동을 위한 핵심 요소 기술이 될 것이라 기대”한다고 밝혔다. 이번 연구는 에너지 분야 국제 학술지인 ‘Energy & Environmental Science’ 2024년 11월7일 표지논문(Outside Front Cover)으로 발표되었다. ※ 논문명: Realizing a high-performance n-type thermogalvanic cell by tailoring thermodynamic equilibrium 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 중견연구자지원사업 지원을 받아 수행됐다.
2024.11.14
조회수 5093
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1