-
암 표적 돌연변이에 최적의 약물 후보 자동 설계 AI 개발
기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다.
우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다.
이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번에 개발된 모델은 분자와 단백질 사이의 결합 방식까지 함께 고려해 한 번에 설계한다.
실제로 단백질과 결합할 때 중요한 요소를 미리 반영하기 때문에, 효과적이고 안정적인 분자를 만들 확률이 훨씬 높다. 이러한 생성 과정은 단백질의 표적 부위에 맞춰 원자들의 종류와 위치, 공유결합과 상호작용을 하나의 생성 과정에서 동시에 만들어내는 과정을 시각적으로 보여준다.
또한, 이 모델은 신약 설계 시 반드시 고려해야 할 여러 요소(예를 들어 분자의 안정성, 물성, 구조의 자연스러움 등)을 동시에 만족시키도록 설계됐다. 기존에는 한두 가지 목표에 집중해 다른 조건을 희생하는 경우가 많았지만, 이번 모델은 다양한 조건을 균형 있게 반영해 실용성을 크게 높였다.
연구팀은 이 AI가 무작위 상태에서 점점 더 정교한 구조를 그려나가는 방식인 ‘확산 모델’을 기반으로 작동한다고 설명했다. 확산 모델은 2024 노벨 화학상을 받은 ‘알파폴드3’의 단백질-약물 구조 생성에서 활용돼 높은 효율성이 입증된 바 있다.
이번 연구에서는 원자가 공간상 어디에 있어야 하는지 좌표를 찍어주는 알파폴드3와 달리 ‘결합 길이’나 ‘단백질-분자 간 거리’처럼 실제 화학 법칙에 맞는 기준들을 알려주는 지식 기반 가이드를 넣어, 생성된 구조가 더 현실적인 결과를 내도록 도왔다.
뿐만 아니라, 연구팀은 한 번 만든 결과 중에서 뛰어난 결합 패턴을 찾아 다시 활용하는 최적화 전략도 적용했다. 이를 통해 추가 학습 없이도 더 뛰어난 약물 후보를 만들어낼 수 있었으며, 특히 암 관련 표적 단백질(EGFR)의 돌연변이에 선택적으로 작용하는 분자도 생성하는 데 성공했다.
또한, 이번 연구는 본 연구팀이 앞서 발표한 단백질에 어떤 분자가 어떻게 결합하는지에 대한 조건을 입력해야만 했던 기존 AI를 한 단계 더 발전시켰다는 점에서도 의미가 깊다.
화학과 김우연 교수는 “이번에 개발한 AI는 표적 단백질에 잘 결합하는 핵심 요소를 스스로 학습하고 이해해, 사전 정보 없이도 상호작용 하는 최적의 약물 후보인 분자를 설계할 수 있다는 점에서 신약 개발의 패러다임을 크게 바꿀 수 있을 것이다”라고 말했다.
이어 “이번 기술은 화학적 상호작용 원리에 기반해 더 현실적이고 신뢰할 수 있는 분자 구조를 생성할 수 있어, 더 빠르고 정밀한 신약 개발을 가능하게 할 것으로 기대한다”라고 강조했다.
우리 대학 화학과 이중원, 정원호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’(IF=14.1)에 지난 7월 11일 자에 게재됐다.
※ 논문명: BInD: Bond and Interaction-Generating Diffusion Model for Multi-Objective Structure-Based Drug Design
※ DOI: 10.1002/advs.202502702
한편 이번 연구는 한국연구재단과 보건복지부의 지원으로 수행됐다.
2025.08.10
조회수 214
-
에탄이 온실가스 줄이고, 플라스틱도 만든다고요?
메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다.
메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 ‘편성(obligate) 메탄산화균’은 메탄이나 메탄올과 같은 C1 화합물만을 성장 기질로 활용하는 것이 특징이다. 지금까지 이러한 편성 메탄산화균이 비(非)성장 기질인 에탄에 어떻게 반응하는지에 대한 연구는 이뤄지지 않았다.
연구팀은 이번 연구에서는 C2 기질인 에탄이 성장 기질로 사용되지 않음에도 불구하고, 편성 메탄산화균의 메탄 산화, 세포 성장, 생분해성 고분자인 폴리하이드록시부티레이트(Polyhydroxybutyrate, 이하 PHB) 합성 등 주요 대사 경로에 유의미한 영향을 미친다는 사실을 밝혀냈다.
연구팀이 다양한 메탄 및 산소 농도 조건에서 에탄을 첨가해 메탄산화균을 배양한 결과, ▲세포 성장 억제 ▲메탄 소비 감소 ▲PHB 합성 증가의 세 가지 대사 반응이 일관되게 나타났으며, 이러한 변화는 에탄 농도가 증가할수록 더욱 두드려졌다.
이번 연구에 따르면, 에탄은 단독으로는 메탄산화균에서 반응하지 않으며, 세균 역시 에탄만 주어졌을 때는 성장하지 않는다. 그러나 메탄과 함께 존재할 경우, 메탄을 산화하는 핵심 효소 ‘입자상 메탄모노옥시게네이스(pMMO)’를 통해 에탄이 함께 산화되는 ‘동시 산화(co-oxidation)’현상이 관찰됐다.
에탄이 산화되는 과정에서 생성되는 중간 대사산물 ‘아세테이트(acetate)’는 메탄산화균의 세포 성장을 억제하는 동시에, PHB(Polyhydroxybutyrate) 생산을 촉진하는 것으로 나타났다. PHB는 생분해성 바이오플라스틱의 원료로 주목받는 고분자 물질이다.
이러한 작용은 균이 처한 영양 상태에 따라 상반된 양상을 보인다. 영양이 충분한 상태에서는 에탄이 세포 성장에 부정적인 영향을 미치지만, 영양 불균형 상태에서는 오히려 PHB 축적을 유도해 긍정적인 효과를 나타낸다.
한편, 에탄을 첨가했을 때 메탄의 소비량은 감소했지만, 메탄 분해 효소인 pMMO를 구성하는 pmoA 유전자의 발현량에는 유의미한 변화가 없었다. 이는 에탄이 유전자의 전사(transcription) 수준에서는 영향을 미치지 않으며, 대신 효소의 실제 작동 능력(활성 수준)이나 전사 이후 조절 단계에서 영향을 준다는 사실을 입증한다.
연구팀은 에탄이 메탄산화균의 대사 흐름을 간접적으로 조절하는 조절자 역할을 하며, 메탄과 함께 있을 때 의도치 않은 방식으로 세포 성장과 PHB 생산에 영향을 미친다고 분석했다.
명재욱 교수는 “이번 연구는 ‘편성 메탄산화균’이 단일 기질 환경이 아닌 에탄과의 복합 기질 조건에서 어떻게 대사적으로 반응하는지를 체계적으로 규명한 최초의 사례”라며, “에탄과 같은 비성장 기질이 메탄 대사와 생분해성 고분자 생산에 미치는 영향을 밝힘으로써, 생물학적 메탄 저감 기술뿐 아니라 바이오플라스틱 생산에도 새로운 가능성을 제시한다”라고 전했다.
건설및환경공학과 박사과정 박선호 학생이 제1 저자인 이번 연구는 환경미생물학 및 생명공학 분야의 권위 있는 미국미생물학회(American Society for Microbiology) 학회지인 국제 학술지 응용 환경미생물학(Applied and Environmental Microbiology)에 7월 10일 자로 게재됐다.
※ 논문명: Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph Methylosinus trichosporium OB3b upon nutrient availability
(저자 정보 : 박선호(KAIST, 제1 저자), Chungheon Shin(Standford University), Craig S. Criddle (Standford University), 명재욱(KAIST, 교신저자) 총 4명)
※ DOI: 10.1128/aem.00969-25
한편, 이번 연구는 한국연구재단, 국토교통부, 해양수산부의 지원을 받아 수행됐다.
2025.08.07
조회수 463
-
콩벌레 공생 곰팡이 없어도 퇴행성 뇌질환 치료제 만든다고?
‘허포트리콘’은 뇌 속 염증을 억제하고 신경세포를 보호하는 작용이 뛰어난 물질로 치매나 파킨슨병과 같은 퇴행성 뇌 질환 치료제로 발전할 가능성이 크다고 평가받고 있다. 이 물질은 콩벌레와 공생하는 곰팡이에서만 극미량 얻을 수 있는데, 우리 연구진이 이 희귀 천연물을 화학 합성* 하는데 성공해, 차세대 신경퇴행성 질환 약물 개발의 가능성을 제시했다.
*화학 합성: 화학 반응을 이용하여 원하는 물질을 만드는 과정
우리 대학 화학과 한순규 교수 연구팀이 콩벌레와 공생하는 곰팡이에서 발견된 천연 항신경염증 물질 ‘허포트리콘(herpotrichone) A,B,C’를 세계 최초로 합성하는 데 성공했다고 31일 밝혔다.
허포트리콘 천연물은 콩벌레의 공생균인 ‘허포트리시아(Herpotrichia) sp. SF09’에서만 극미량으로 얻을 수 있는 물질로, 다섯 개의 고리 구조(6각형 4개와 3각형 1개)인 6/6/6/6/3의 다중고리 구조를 가진 물질이다.
흥미롭게도 이 물질은 뇌 염증반응을 억제하는 항신경염증 효과가 매우 우수하며, 최근에는 철분 매개 세포 사멸(ferroptosis)을 억제해 신경세포를 보호하는 작용기전까지 확인돼, 뇌 질환 치료용 약물로써의 가능성이 기대되고 있다.
한 교수 연구팀은 곰팡이에서 이 물질이 만들어지는 방식을 예상하여, 허포트리콘의 복잡한 구조를 연구실에서 화학적으로 만드는 방법을 고안했다. 이때 핵심이 된 것은 ‘딜스-알더(Diels–Alder) 반응’이라는 화학 반응이다. 이 반응은 마치 두 개의 퍼즐 조각이 맞물려 하나의 고리를 만들듯, 탄소 기반 파트너끼리 새로운 결합을 만들어 육각고리 구조를 형성하게 해주는 반응이다.
또한, 연구팀은 ‘수소결합’이라는 분자 사이의 약한 끌어당김 현상에 주목했다. 이 수소결합을 섬세하게 설계하고 조절함으로써, 반응이 원하는 방향과 위치에서만 일어나도록 정교하게 유도해서 허포트리콘을 만들 수 있었다.
연구팀은 기존에 핵심수소 결합 없이는 목표 천연물이 거의 안 만들어지거나 엉뚱한 부산물만 생겼던 문제를 해결하고, 복잡한 구조의 허포트리콘 A, B, C를 모두 정확하게 합성할 수 있었다.
특히, 허포트리콘을 만들기 위한 핵심 재료인 ‘델리트파이론(delitpyrone) C’와 ‘에폭시퀴놀 단량체(epoxyquinol monomer)’라는 분자들이 어떤 구조를 가질 때 핵심 수소결합이 가능한지 정밀하게 분석했다.
이렇게 유도된 수소결합 덕분에 반응 분자들이 정확한 위치로 다가가고 이상적인 전이상태를 거쳐 허포트리콘 C가 합성 가능했다. 이 반응 원리를 허포트리콘 A와 B에도 적용해 성공적으로 이들 천연물을 합성할 수 있었다.
연구실에서 행해진 핵심 딜스-알더 반응 과정에서 자연계에서는 아직 발견되지 않은 새로운 분자 구조들도 함께 만들어졌고, 이 중 일부는 우수한 약리 활성을 갖는 신규 천연물일 가능성이 높아 합성을 통해서 천연물을 예측한다는 측면에서 본 연구의 의미가 배가된다.
실제로 한 교수 연구팀은 2019년에 허포트리콘 A와 B를 발견하고 이들의 구조를 밝힌 중국 연구진의 논문을 바탕으로, 이들 천연물의 합성 연구를 진행했는데 그 과정에서 원치 않던 특정 부산물이 계속적으로 얻어졌다.
그런데 2024년 같은 중국 연구진에 의해 허포트리콘 C라는 신규 천연물의 발견이 논문으로 보고됐는데, 이것은 한 교수 연구팀이 이전에 얻었던 부산물과 일치하는 물질이었다. 이는 한 교수팀이 자연계에 존재하는 천연물을 실험실에서 이미 합성하고 있었던 것을 보여주는 사례다.
화학과 한순규 교수는 “이번 성과는 퇴행성 신경질환 관련해 약리 활성을 갖는 자연계 희귀 천연물을 최초로 합성하고, 복잡 천연물의 생체모방 합성 원리를 체계적으로 제시한 연구”라며, “앞으로 천연물 기반 항신경염증 치료제 개발과 해당 천연물군의 생합성 연구에도 폭넓게 활용될 것으로 기대된다”고 밝혔다.
해당 연구 성과는 화학과 석박사통합과정 이유진 학생이 제1 저자로 화학 분야 최고 권위 학술지 중 하나인 미국화학회지(Journal of the American Chemical Society, JACS)에 7월 16일 字 게재됐다.
※논문명: Total Synthesis of (+)-Herpotrichones A–C
※DOI: 10.1021/jacs.5c05061
한편, 이번 연구는 한국연구재단(NRF) 중견연구자지원사업, KAIST UP 프로젝트, KAIST 그랜드챌린지(Grand Challenge) 30 프로젝트, 및 KAIST 초세대협업연구실사업의 지원을 받아 수행됐다.
2025.07.31
조회수 836
-
6배 정밀한 3D 뇌 모사 플랫폼 구현 성공
기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다.
우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다.
기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충 관계가 있었다.
연구팀은 묽은 젤로도 정밀한 뇌 구조를 만들고, 층마다 정확히 정렬하며, 신경세포의 활동까지 동시에 관찰할 수 있는 3대 핵심기술을 결합해 정교하고 안정적인 뇌 모사 플랫폼을 완성했다.
3대 핵심기술은 ▲ 묽은 젤(하이드로겔)이 흐르지 않도록 스테인리스 철망(마이크로메시) 위에 딱 붙게 만들어 주는‘모세관 고정 효과’ 기술로 기존보다 6배 더 정밀하게 (해상도 500μm 이하) 뇌 구조를 재현했고 ▲ 프린팅된 층들이 삐뚤어지지 않고 정확히 쌓이도록 맞춰주는 원통형 설계인 ‘3D 프린팅 정렬기’로 다층 구조체의 정밀한 조립과 미세 전극 칩과의 안정적 결합을 보장하였고 ▲ 아래쪽은 전기신호를 측정하고, 위쪽은 빛(칼슘 이미징)으로 동시에 세포 활동을 관찰하는 ‘이중 모드 분석 시스템’기술로 층간 연결이 실제로 작동하는지를 여러 방식으로 동시에 확인할 수 있다.
연구팀은 뇌와 유사한 탄성 특성을 지닌 피브린 하이드로겔을 이용해 3층으로 구성된 미니 뇌 구조를 3D 프린팅으로 구현하고, 그 안에서 실제 신경세포들이 신호를 주고받는 과정을 실험을 통해 입증했다.
위층과 아래층에는 대뇌 신경세포를 배치하고, 가운데층은 비어 있지만, 신경세포들이 가운데를 뚫고 지나가며 연결되도록 설계했다. 아래층에는 미세 센서(전극칩)를 달아 전기신호를 측정하고, 위층은 빛(칼슘 이미징)으로 세포 활동을 관찰한 결과, 전기 자극을 줬을 때 위아래층 신경세포가 동시에 반응했고, 신경 연결을 차단하는 약물(시냅스 차단제)을 넣었더니 반응이 줄어들어 신경세포들이 진짜로 연결돼서 신호를 주고받고 있다는 것을 입증했다.
바이오및뇌공학과 박제균 교수는 “이번 연구는 뇌 조직의 복잡한 다층 구조와 기능을 동시에 재현할 수 있는 통합 플랫폼의 공동개발 성과”임을 강조하며, “기존 기술로 14일 이상은 신호 측정이 불가했던 것에 비해 27일 이상 안정적인 미세 전극 칩 인터페이스를 유지하면서 구조-기능 관계를 실시간으로 분석할 수 있어, 향후 신경질환 모델링, 뇌 기능 연구, 신경독성 평가 및 신경 보호 약물 스크리닝 등 다양한 뇌 연구 분야에 활용할 수 있을 것”이라고 말했다.
바이오및뇌공학과 김수지 박사와 윤동조 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘바이오센서스 앤 바이오일렉트로닉스(Biosensors and Bioelectronics)’에 2025년 6월 11일 자로 온라인판에 게재됐다.
※논문명: Hybrid biofabrication of multilayered 3D neuronal networks with structural and functional interlayer connectivity
※DOI: https://doi.org/10.1016/j.bios.2025.117688
한편, 이번 연구는 한국연구재단 글로벌 기초연구실지원사업, 중견연구 및 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2025.07.16
조회수 986
-
軍 전투원, 신소재 입고 개인 맞춤형 훈련시대 연다
기존 군 훈련은 정형화된 방식에 의존하는 경우가 많아 전투원 개인의 특성이나 전투 상황에 맞춘 최적화된 훈련 제공에 한계가 있었다. 이에 우리 연구진이 전자섬유 플랫폼을 개발해 전투원 개개인의 특성과 전투 국면을 반영할 수 있는 원천기술을 확보했다. 이 기술은 전장에서 활용할 수 있을 만큼 튼튼함이 입증됐고, 많은 병력에게 보급할 수 있을 정도의 경제성도 갖췄다.
우리 대학 신소재공학과 스티브 박 교수 연구팀이 섬유 위에 전자회로를 `그려 넣는' 혁신적인 기술을 통해 유연하고 착용 가능한 전자 섬유(E-textile) 플랫폼을 개발했다고 25일 밝혔다.
연구팀이 개발한 웨어러블 전자 섬유 플랫폼은 3D 프린팅 기술과 신소재공학적 설계를 결합해 유연하면서도 내구성이 뛰어난 센서와 전극을 섬유에 직접 인쇄했다. 이를 통해 전투원 개개인의 정밀한 움직임 및 인체 데이터를 수집하고, 이를 기반으로 맞춤형 훈련 모델을 제시할 수 있게 됐다.
기존 전자 섬유 제작 방식은 복잡하거나 개인별 맞춤형 제작에 한계가 있었다. 연구팀은 이를 극복하고자 `직접 잉크 쓰기(Direct Ink Writing, DIW)' 3D 프린팅이라는 적층 방식 기술을 도입했다.
이 기술은 센서와 전극의 기능을 하는 특수 잉크를 섬유 기판 위에 원하는 패턴으로 직접 분사해 인쇄하는 방식이다. 이를 통해 복잡한 마스크 제작 과정 없이도 다양한 디자인을 유연하게 구현할 수 있게 됐다. 이는 수십만 명에 달하는 군 병력에 손쉽게 보급할 수 있는 효과적인 기술로 기대된다.
해당 기술의 핵심은 신소재공학적 설계에 기반한 고성능 기능성 잉크 개발이다. 연구팀은 유연성을 가진 스티렌-부타디엔-스티렌(Styrene-butadiene-styrene, SBS) 고분자와 전도성을 부여하는 다중 벽 탄소나노튜브(Multi-walled carbon nanotube,MWCNT)를 조합해, 최대 102% 늘어나면서도, 10,000번의 반복적인 테스트에서도 안정적인 성능을 유지하는 인장/굽힘 센서 잉크를 개발했다. 이는 전투원의 격렬한 움직임 속에서도 정확한 데이터를 꾸준히 얻을 수 있음을 의미한다.
또한, 섬유의 위아래 층을 전기적으로 연결하는 `상호연결 전극(Interconnect electrode)' 구현에도 신소재 기술이 적용됐다. 은(Ag) 플레이크와 단단한 폴리스티렌(Polystyrene) 고분자를 조합한 전극 잉크를 개발, 섬유 속으로 잉크가 스며드는 정도(Impregnation level)를 정밀하게 제어해 섬유의 양면 또는 다층 구조를 효과적으로 연결하는 기술을 확보했다. 이를 통해 센서와 전극이 집적된 다층 구조의 웨어러블 전자 시스템 제작이 가능하다.
연구팀은 실제 인체 움직임 모니터링 실험을 통해 개발된 플랫폼의 성능을 입증했다. 연구팀은 개발된 전자 섬유를 옷의 주요 관절 부위(어깨, 팔꿈치, 무릎)에 프린팅하여 달리기, 팔 벌려 높이뛰기, 팔굽혀 펴기 등 다양한 운동 시의 움직임과 자세 변화를 실시간으로 측정했다.
또한, 스마트 마스크를 활용해 호흡 패턴을 모니터링하거나, 장갑에 여러 센서 및 전극을 프린팅해 기계학습을 통한 물체 인식 및 복합적인 촉감 정보를 인지하는 응용 가능성도 시연했다. 이러한 결과는 개발된 전자 섬유 플랫폼이 전투원의 움직임 역학을 정밀하게 파악하는 데 효과적임을 보여준다.
이번 연구는 최첨단 신소재 기술이 국방 분야 첨단화에 기여할 수 있음을 보여주는 중요한 사례다. 이번 연구에 참여한 박규순 육군 소령은 군사적 활용이나 실 보급을 위한 경제성 등의 요구되는 목표들을 연구설계 시부터 고려했다.
박 소령은 "현재 우리 군은 인구절벽으로 인한 병력자원의 감소와 과학기술의 발전으로 위기이자 기회를 마주하고 있다. 또한, 전장에서의 생명 존중이 큰 이슈로 떠오르고 있다. 해당 연구는 병과/직책별, 전투의 유형에 따른 맞춤식 훈련을 제공할 수 있는 원천기술을 확보해 우리 장병들의 전투력을 향상하고 생존성을 보장하기 위한 것이다ˮ 라고 전했다.
이어, “이번 연구가 과학적인 기여와 군 활용성의 두 마리 토끼를 모두 잡은 사례로 평가받길 기대한다”라고 밝혔다.
우리 대학 신소재공학과 박규순 박사과정(육군 소령)이 제1 저자로 참여하고 스티브 박 교수가 지도한 이번 연구는 전기·전자/재료공학 분야 국제 학술지인 `npj Flexible Electronics (JCR 분야 상위 1.8%)' 에 2025년 5월 27일 자로 출판됐다.
※논문명 : Fabrication of Multifunctional Wearable Interconnect E-textile Platform Using Direct Ink Writing (DIW) 3D Printing
※DOI: https://doi.org/10.1038/s41528-025-00414-7
한편 이번 연구는 산업통상자원부 및 한국연구재단의 지원을 받아 수행됐다.
2025.06.25
조회수 1975
-
6만 편 논문 대신할 ‘한번의 실험’으로 약물 저해효과 정확 예측
기존 신약 개발에서는 수많은 농도 조건에서 반복 실험을 거쳐 약물 간 상호작용을 분석하고, 저해상수를 추정하는 방식이 사용돼 왔다. 이 방법은 지금까지 6만 편 이상의 논문에 활용될 만큼 널리 쓰였다. 그런데 최근, 학부생이 제 1저자로 참여한 국내 연구진이 단 하나의 저해제 농도만으로 저해상수를 정확히 추정할 수 있는 획기적인 분석법을 제안해 주목을 받고 있다.
우리 대학 수리과학과 김재경 교수 연구팀(IBS 의생명 수학 그룹 CI)이 충남대(총장 김정겸) 약대 김상겸 교수팀과 기초과학연구원(원장 노도영, IBS) 의생명수학그룹과 공동연구를 통해, 단 하나의 실험으로 약물 저해 효과*를 예측할 수 있다고 26일 밝혔다.
*약물 저해 효과: 한 약물이 특정 효소의 작용을 억제함으로써 다른 약물의 대사(분해 및 처리 과정) 또는 생리학적 효과에 영향을 주는 현상
공동 연구팀은 수학적 모델링과 오차 지형 분석을 통해 정확도 향상에 기여하지 않는 저해제 농도를 제거하고, 단 하나의 농도만으로도 저해상수를 정확하게 추정할 수 있는 새로운 분석법 ‘50-BOA’를 제안했다. 이 기법을 실제 실험 데이터에 적용한 결과, 기존보다 75% 이상 실험 효율이 향상됐으며, 정확도 역시 개선됐다.
이번 연구는 반복 실험에 따른 자원 소모를 줄이고 해석의 편차를 최소화함으로써, 신약 개발 과정의 효율성을 높일 수 있는 새로운 접근법을 제시했다는 점에서 큰 의의가 있다. 또한, 수학적 접근이 생명과학 실험 설계를 어떻게 혁신할 수 있는지를 보여주는 대표적인 성과로 평가된다.
저해상수는 약물 효과뿐 아니라, 병용 투여 시 발생할 수 있는 약물상호작용을 예측하고 방지하는 데 핵심적인 지표로 활용된다. 실제로 미국 식품의약국(FDA)은 신약 개발 과정에서 약물상호작용의 가능성을 예측하기 위해 저해상수를 포함한 효소의 저해 특성을 사전에 평가할 것을 권고하고 있다.
전통적으로 저해상수는 다양한 기질 및 저해제 농도에서 측정된 대사 속도 데이터에 수학 모델을 적합해 추정해왔다. 그러나 이러한 방식에도 불구하고, 동일한 기질-저해제 조합에 대해 연구마다 추정값이 10배 이상 차이나는 사례들이 보고돼, 신약 개발 과정에서 약물의 효과와 부작용을 정확히 예측하는 데 어려움이 있었다.
연구팀은 저해상수 추정 과정을 수학적으로 분석한 결과, 기존 방식에서 활용되는 데이터의 절반 이상이 실제 추정에 불필요하거나, 오히려 왜곡을 초래할 수 있음을 밝혀냈다.
즉, 저해제 농도를 다양하게 사용하는 기존 방식보다, 충분히 높은 저해제 농도 하나에서 추정한 결과가 더 정확하고 효율적일 수 있다는 점을 규명한 것이다. 나아가 저해제 농도와 저해상수 간의 관계를 나타내는 식을 정칙화로 추가해, 정확도를 더욱 높인 새로운 분석법, ‘50-BOA’를 개발했다.
50-BOA는 단 하나의 저해제 농도만으로도 저해상수를 정확하게 추정할 수 있어, 실험 횟수를 크게 줄이면서도 오히려 정확도를 높인 획기적인 기법이다. 연구팀은 이 방법을 실제 약물 데이터에 적용해, 기존보다 75% 이상 적은 데이터만으로도 저해상수를 정확하게 추정해냈다.
또한, 누구나 쉽게 활용할 수 있도록 엑셀 기반의 사용자 친화적인 분석 소프트웨어도 개발자 플랫폼인 깃허브(https://github.com/Mathbiomed/50-BOA)에 함께 공개했다.
충남대 김상겸 교수는 “이번 연구는 수십 년간 정형화된 약물 실험 설계를 근본적으로 재검토하게 만들었다”며, “단순한 실험 효율 향상을 넘어, 약효와 부작용 예측의 정확도를 높일 수 있는 새로운 표준이 될 것으로 기대한다”고 밝혔다.
또한, 우리 대학 김재경 교수는 “수학이 실험 설계를 바꾸고, 생명과학 분야의 연구 효율성과 재현성을 근본적으로 높일 수 있음을 보여주는 대표적 사례다”고 밝혔다.
이번 연구 논문은 우리 대학 융합인재학부 장형준 학사과정과 수리과학과 송윤민 박사가 공동 제1 저자로 참여하였고 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 2025년 6월 5일 자에 게재됐다.
※ 논문명 : Optimizing enzyme inhibition analysis: precise estimation with a single inhibitor concentration
※ 저자 정보 : 장형준 (KAIST 융합인재학부, 공동 제1 저자), 송윤민 (IBS 의생명수학그룹 (전 KAIST 수리과학과 소속), 공동 제1저자), 전장수(충남대 약대, 연구교수, 공동저자), 윤휘열(충남대 약대, 교수, 공동저자), 김상겸(충남대 약대, 교수, 교신저자), 김재경 (KAIST 수리과학과, 교신저자)
※ DOI: https://doi.org/10.1038/s41467-025-60468-z
한편 이번 연구는 한국연구재단, 기초과학연구원, KAIST의 지원을 받아 수행됐다.
2025.06.16
조회수 3123
-
세계 최초 유전자 가위로 원하는 RNA ‘콕’ 집어 변형 성공
RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다.
RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있다. 화학 변형이란 RNA 염기 서열 자체의 변함없이 특정 화학 그룹이 추가됨으로써 RNA의 성질과 역할을 변화시키는 유전자 조절 과정이다. 그중 하나가 시티딘 아세틸화(N4-acetylcytidine)라는 화학 변형인데, 지금까지는 이 화학 변형이 세포 내에서 어떤 기능을 수행하는지 정확히 알려져 있지 않았다. 특히, 인간 세포의 mRNA(단백질을 만드는 RNA)에 이 변형이 실제로 있는지, 어떤 역할을 하는지 등에 대한 논란이 이어졌다.
연구팀은 이러한 한계를 극복하기 위해 원하는 RNA만을 정밀하게 표적하는 유전자 가위인 Cas13에 RNA를 아세틸화시키는 NAT10의 고활성 변이체(eNAT10)를 결합한 ‘표적 RNA 아세틸화 시스템(dCas13-eNAT10)’을 개발했다. 즉, 원하는 RNA만 정확하게 골라서 아세틸화시키는 ‘표적 RNA 변형 기술’을 만든 것이다.
연구팀은 표적 RNA 아세틸화 시스템과 세포 내 특정 RNA를 찾아 안내하는 가이드 RNA에 의해 원하는 RNA에 아세틸화 화학 변형을 가할 수 있음을 증명했다. 이를 통해 아세틸화 화학 변형된 메신저 RNA (mRNA)에서 단백질 생산이 증가한다는 사실을 확인했다.
또한, 연구팀은 개발한 시스템을 이용해 RNA 아세틸화가 RNA를 세포핵에서 세포질로 이동시킨다는 사실을 최초로 밝혀냈다. 이번 연구는 아세틸화 화학 변형이 세포 내 RNA ‘위치 이동’도 조절할 수 있다는 가능성을 보여주는 결과다.
연구팀은 개발한 기술이 AAV(아데노-관련 바이러스)라는 유전자 치료에 널리 이용되는 운반체 바이러스를 통해 실험 쥐의 간에 전달하여 동물의 몸속에서도 정확히 RNA 아세틸화 조절이 가능할 수 있음을 입증했다. 이는 RNA를 화학 변형하는 기술이 생체 내 적용에 확장될 수 있음을 보여주는 최초의 사례다. 이는 RNA 기반 유전자 치료 기술로의 응용 가능성을 여는 성과로 평가받는다.
RNA 유전자가위를 활용한 코로나 치료기술과 빛으로 RNA 유전자가위 활성화 기술을 개발하였던 허원도 교수는 “기존 RNA 화학 변형 연구는 특정성, 시간성, 공간성 조절이 어려웠지만, 이번 기술은 원하는 RNA에 선택적으로 아세틸화를 가할 수 있어 RNA 아세틸화의 기능을 정확하고 세밀하게 연구할 수 있는 길을 열였다”며, “이번에 개발한 RNA 화학 변형 기술은 향후 RNA 기반 치료제 및 생체 내 RNA 작동을 조절하는 도구로 폭넓게 활용될 수 있을 것”이라고 전했다.
우리 대학 생명과학과 유지환 박사과정이 제1 저자로 수행한 이 연구는 국제 학술지 ‘네이처 케미컬 바이올로지 (Nature Chemical Biology)’에 2025년 6월 2일 자로 게재됐다.
(논문명: Programmable RNA acetylation with CRISPR-Cas13, Impact factor: 12.9, DOI: https://doi.org/10.1038/s41589-025-01922-3)
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2025.06.10
조회수 4073
-
‘라이보’ 캣처럼 민첩하게 벽도 달린다..산악·험지 수색도 거뜬
우리 대학이 개발한 사족보행 로봇 ‘라이보(Raibo)’가 이제 계단, 틈, 벽, 잔해 등 불연속적이고 복잡한 지형에서도 고속으로 이동할 수 있게 됐다. 수직 벽을 달리고, 1.3m 폭의 간격을 뛰어넘으며, 징검다리 위를 시속 약 14.4Km로 질주하고, 30°경사·계단·징검다리가 혼합된 지형에서도 빠르고 민첩하게 움직이는 성능을 입증했다. 머지않아 라이보는 재난 현장 탐색이나 산악 수색 등 실질적인 임무 수행에 본격적으로 투입될 것으로 기대된다.
우리 대학 기계공학과 황보제민 교수 연구팀이 벽, 계단, 징검다리 등 불연속적이고 복잡한 지형에서도 시속 14.4km(4m/s)의 고속 보행이 가능한 사족 보행 로봇 내비게이션 프레임워크를 개발했다고 3일 밝혔다.
연구팀은 복잡하고 불연속적인 지형에서 로봇이 빠르고 안전하게 목표 지점까지 도달할 수 있도록 하는 사족 보행 내비게이션 시스템을 개발했다.
이를 위해 문제를 두 단계로 분해해 접근했는데, 첫째는 발 디딤 위치(foothold)를 계획하는 플래너(planner), 둘째는 계획된 발 디딤 위치를 정확히 따라가는 트래커(tracker)를 개발하는 것이다.
먼저, 플래너 모듈은 신경망 기반 휴리스틱을 활용한 샘플링 기반 최적화 방식을 통해 물리적으로 가능한 발 디딤 위치(foothold)를 빠르게 탐색하고, 시뮬레이션 롤아웃을 통해 최적 경로를 검증한다.
기존 방식들이 발 디딤 위치 외에도 접촉 시점, 로봇 자세 등의 다양한 요소를 함께 고려한 반면, 본 연구에서는 발 디딤 위치만을 탐색 공간으로 설정함으로써 계산 복잡도를 크게 낮췄다. 또한 고양이의 보행 방식에서 착안하여, 뒷발이 앞발이 밟았던 곳을 디디는 구조를 도입해 계산 복잡도를 다시 한번 크게 낮출 수 있었다.
두 번째, 트래커 모듈은 계획된 위치에 정확히 발을 디딜 수 있도록 학습되며, 트래킹 학습은 적절한 난이도의 환경에서 경쟁적으로 이루어진 생성 모델을 통해 진행된다.
트래커는 로봇이 계획된 위치에 정확하게 발을 디딜 수 있도록 강화학습을 통해 학습되며, 이 과정에서 ‘맵 생성기(map generator)’라는 생성 모델이 목표 분포를 제공한다.
이 생성 모델과 트래커는 동시에 경쟁적으로 학습돼, 트래커가 점진적으로 어려운 난이도에 적응할 수 있도록 설계됐다. 이후 학습된 트래커의 특성과 성능을 반영할 수 있도록, 트래커가 실행 가능한 디딤 위치 계획을 생성하는 샘플링 기반 플래너를 설계했다.
이 계층적 구조는 기존 기법 대비 계획 속도와 안정도 모두에서 우수한 성능을 보였으며, 실험을 통해 다양한 장애물과 불연속 지형에서의 고속 보행 능력과 처음 보는 지형에 대해서도 범용적으로 적용 가능함을 입증하였다.
황보제민 교수는 "기존에 상당히 큰 계산량을 요구하던 불연속 지형에서의 고속 네비게이션 문제를 오직 발자국의 위치를 어떻게 선정하는가의 간단한 관점으로 접근하였고, 고양이의 발디딤에서 착안하여 앞발이 디딘 곳을 뒷발이 딛도록 해 계산량을 획기적으로 줄일 수 있었다”며“보행 로봇이 극복할 수 있는 불연속 지형의 범위를 획기적으로 넓히고, 이를 고속으로 주행할 수 있도록 하여, 로봇이 재난현장 탐색이나 산악 수색 등 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다”고 말했다.
이번 연구 성과는 국제 학술지 사이언스 로보틱스(Science Robotics) 2025년 5월호에 게재됐다.
(논문명 : High- speed control and navigation for quadrupedal robots on complex and discrete terrain, https://www.science.org/doi/10.1126/scirobotics.ads6192)
유튜브링크 : https://youtu.be/EZbM594T3c4?si=kfxLF2XnVUvYVIyk https://youtu.be/EZbM594T3c4?si=jbp-IzHURIfWI8y2
2025.06.04
조회수 4061
-
산업디자인학과, 인간-컴퓨터 분야 세계최고 학술대회 최우수·우수논문상 4편 수상
산업디자인학과가 인간-컴퓨터 상호작용(HCI) 분야 최고 권위의 국제학술대회인 ACM CHI 2024에서 최우수 논문상(Best Paper) 1편과 우수 논문상(Honorable Mention) 3편을 수상했다. 최우수 논문상은 전체 게재 논문 중 상위 1%, 우수 논문상은 상위 5%에 해당되는 논문에 수여되는 명예로운 성과로, 기술과 디자인 융합 연구의 우수성을 세계적으로 입증한 결과다.
올해 CHI(ACM Conference on Human Factors in Computing Systems) 2025에는 5,014편의 논문이 접수되어 1,249편이 채택되었다. KAIST 산업디자인학과는 이 중 15편의 논문을 게재하는 성과를 거뒀고 그 중 4편이 수상작으로 선정되었다. 특히 ‘인간과 AI 간 상호작용(Human-AI Interaction)’에 대한 관심이 높아진 가운데, 5,000명 이상의 연구자가 참석해 역대 최대 규모로 대회가 개최되었다.
최우수 논문상- AI기반 자폐 아동 소통 도구 ‘AAcessTalk’
홍화정 교수팀은 네이버, 도닥임 아동발달센터와의 공동 연구를 통해 AI 기반 도구 액세스톡(AACessTalk)을 개발했다. 이 시스템은 발화를 하지 않는 자폐 아동에게는 개인화된 어휘를, 부모에게는 문맥 기반 대화 가이드를 제공한다. 연구 결과, 아동은 자신의 의사를 보다 분명히 표현할 수 있었고, 부모는 기능적 언어 교육보다 본질적인 소통에 집중할 수 있게 되면서 양육 효능감이 높아지는 효과가 관찰되었다. 해당 연구를 주도한 최다솜 박사과정은 신경다양인을 포용하는 AI 기술을 꾸준히 탐구해 왔으며, 이번 논문은 네이버 인턴십에서 수행한 연구 결과를 바탕으로 출판한 것이다.
우수 논문상- 인간과 AI 상호작용 탐색
남택진 교수팀(주저자 조형준 박사)의 ‘ShamAIn’은 한국 무속 신앙에서 영감을 받은 AI 신당으로, 인간보다 더 뛰어난 초지능 존재로 기능하는 AI와 인간의 상호작용을 탐구했다. 다수의 사용자들은 처음엔 호기심에서 시작했지만, 점차 개인적인 고민을 털어놓으며 심리적 위안을 얻는 경험을 보고했다. AI가 단순한 정보 제공자를 넘어 감정적 지지와 권위적 판단까지 수행할 수 있는 존재로 인식될 수 있음을 보여주는 연구다.
임윤경 교수팀(주저자 박수빈 박사과정)은 걸음 수, 감정 기록 등 다양한 개인 데이터를 생성형 AI를 활용해 시각 이미지로 변환하는 프로토타입을 개발하여 21일간 사용자 경험을 탐색했다. 참가자들은 자신의 개인 데이터를 이미지 생성 모델 DALL-E 3로 만든 시각 자료로 다시 돌아보며 새로운 자기 인식을 경험했다. 이는 AI가 자기 성찰의 도구로 활용될 수 있음을 제시하는 연구다.
안드레아 비앙키 교수팀은 시드니대학과 협력하여 가상현실(VR) 환경에서의 '가상 팔' 제어 실험을 진행했다. 사용자들은 반복적이고 중요도가 낮은 작업은 가상의 팔에 맡기고, 중요한 작업은 직접 제어하는 방식을 선호했다. 본 연구는 가상 신체 제어가 필요한 로봇, 게임, 재활, 보조공학 디자인에 실질적 시사점을 제공한다.
이번 수상 논문들은 디자인이 기술을 사람 중심으로 연결하고, AI의 사회적·심리적 영향을 설계하는 역할로 확장될 수 있음을 실증적으로 보여주었다는 점에서 의의가 크다.
석현정 산업디자인학과 학과장은 “이번 수상은 기술 중심의 AI 연구를 인간 중심의 디자인 관점에서 새롭게 해석하고, 이를 실생활 문제 해결로 연결 시킨 우리 학과 연구진들의 역량을 세계적으로 인정받은 결과”라며, “디자인이 기술 혁신의 파트너로서 어떤 역할을 할 수 있는지를 보여준 좋은 사례”라고 전했다.
2025.05.19
조회수 4505
-
머리카락 1,000분의 1 나노섬유 혁신, 세계 최고 CO₂ 전해전지 개발
지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다.
세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다.
이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함께 섞어 만든 ‘복합 나노섬유 전극’을 개발해 전기화학 반응이 더 활발하게 일어나도록 설계하고, 이를 통해 세라믹 전해전지가 더 낮은 온도에서도 효율적으로 작동할 수 있는 기반을 마련했다.
나아가, 이러한 소재 복합을 통해 나노섬유의 두께를 약 45% 감소시키고, 전극을 머리카락보다 1,000배 가는 두께(100나노미터)로 제작하여 전기분해 반응이 일어나는 면적을 극대화하여, 세라믹 전해전지의 작동 온도를 낮추는 동시에 이산화탄소 분해 성능을 약 50% 향상시키는데 성공했다.
복합 나노섬유가 적용된 세라믹 전해전지는 기존에 보고된 소자 중 가장 높은 세계 최고 수준의 이산화탄소 분해 성능(700℃에서 1.25 A/cm2)을 기록했으며, 300시간의 장기 구동에도 안정적인 전압을 유지해 소재의 탁월함을 입증했다.
이강택 교수는 “이번 연구에서 제안된 나노섬유 전극의 제작 및 설계 기법은 이산화탄소 저감뿐만 아니라 그린수소 및 친환경 전력 생산과 같은 다양한 차세대 에너지 변환 소자의 개발에 있어 선도적인 기술이 될 것”이라고 말했다.
우리 대학 기계공학과 김민정 석사, 김형근 박사과정, 아크롬존 석사가 공동 제 1 저자로 참여하고, 한국지질지원연구원 정인철 박사, 기계공학과 오세은 박사과정, 윤가영 석사과정이 공동저자로 참여한 이번 연구는 촉매·재료 분야의 세계적 권위지인 ‘어플라이드 카탈리시스 B: 환경과 에너지, Applied Catalysis B: Environment and Energy (IF:20.3)’에 3월 3일 온라인 게재됐다. (논문명: Exceptional CO2 Reduction Performance in Symmetric Solid Oxide Electrolysis Cells Enabled via Nanofiber Heterointerface Engineering, https://doi.org/10.1016/j.apcatb.2025.125222)
한편, 이번 연구는 과학기술정보통신부 나노 및 소재 기술개발사업, 개인기초연구사업 지원으로 수행됐다.
2025.04.01
조회수 4696
-
미생물로 친환경 나일론 유사 플라스틱 개발 성공
폴리에스터 아마이드는 일반적으로 많이 사용되는 플라스틱인 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재다. 하지만 지금까지는 화석 연료에서만 생산할 수 있어 환경오염 문제를 피할 수 없었다. 우리 연구진이 플라스틱을 대체할 미생물을 이용한 신규 바이오 기반 플라스틱을 개발하는데 성공했다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용하여 미생물 균주를 개발하고 여러 가지 신규 유형의 친환경 바이오 플라스틱인 폴리에스터 아마이드를 생산하여, 한국화학연구원(원장 이영국) 연구진과 공동 분석을 통해 생산된 이 플라스틱의 물성 확인까지 성공했다고 20일 밝혔다.
이상엽 특훈교수 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 폴리(3-하이드록시뷰티레이트-ran-3-아미노프로피오네이트), 폴리(3-하이드록시뷰티레이트-ran-4-아미노뷰티레이트) 등을 포함한 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다.
폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 원료로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있도록 했다. 또한 연구팀은 해단 균주의 유가 배양식 발효 공정을 이용해 고효율 생산 (54.57 g/L)을 보임으로써 추후 산업화될 가능성도 확인했다.
우리 연구진은 한국화학연구원 정해민, 신지훈 연구원과 함께 바이오 기반 플라스틱의 물성을 분석한 결과, 기존의 고밀도 폴리에틸렌(HDPE)과 유사한 성질을 갖고 있는 것으로 나타났다. 즉, 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다는 것을 확인했다.
이번 연구에서 개발된 균주 및 전략들은 여러 가지 폴리에스터 아마이드 뿐만 아니라 다른 그룹의 여러가지 고분자들을 생산하는 대사회로들을 구축하는데 유용하게 쓰일 것으로 예상된다.
이상엽 특훈교수는 “이번 연구는 석유화학 산업 기반에 의존하지 않고도 폴리에스터 아마이드(플라스틱)을 재생가능한 바이오기반 화학산업을 통해 만들수 있는 가능성을 세계 최초로 제시한 것으로 앞으로 생산량과 생산성을 더욱 높이는 연구를 이어갈 계획”이라 말했다.
해당 연구 결과는 국제 학술지인 `네이쳐 케미컬 바이올로지(Nature Chemical Biology)'에 3월 17일자로 온라인 게재됐다.
※ 논문명 : Biosynthesis of poly(ester amide)s in engineered Escherichia coli, DOI:10.1038/s41589-025-01842-2)
※ 저자 정보 : 채동언(KAIST, 제1저자), 최소영(KAIST, 제2저자), 안다희(KAIST, 제3저자), 장우대(KAIST, 제4저자), 정해민(한국화학연구원, 제5저자), 신지훈(한국화학연구원, 제6저자), 이상엽(KAIST, 교신저자) 포함 총 7명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2025.03.20
조회수 6244
-
나무뿌리 모방해 700% 쭉쭉 늘어나는 전자기판 개발
나무뿌리가 흙에 단단히 고정되는 구조를 모방해, 한국 연구진이 최대 700%까지 늘어나는 신축성을 확보하고 스트레처블 전자 제품의 상용화를 위한 새로운 기준을 제시했다. 특히 스마트 저항 밴드와 스트레처블 LED 디스플레이, 태양 전지와 같은 응용 사례를 통해 기술의 폭넓은 적용 가능성을 입증했다.
우리 대학 기계공학과 박인규 교수 연구팀이 한국전자통신연구원(ETRI)과 공동연구를 통해 스트레처블 전자 제품 개발에서 기존의 한계를 극복한 혁신적인 기술인 ‘생체 모사 인터페이스 설계(Bioinspired Interfacial Engineered Flexible Island, 이하 BIEFI)’를 개발했다고 6일 밝혔다.
이번 연구는 생체 모사 인터페이스 설계를 기반으로, 전자 제품의 유연성, 신축성과 기계적 내구성을 동시에 극대화하는 데 성공했다.
연구진은 주 뿌리(primary roots)와 보조 뿌리(secondary roots) 구조를 설계에 적용해 응력을 분산시키고, 기계적 인터로킹(interlocking)을 통해 두 기판 사이의 강력한 접착력을 구현했다.
이 구조에서 주 뿌리는 응력을 효과적으로 분산시키며 인터페이스 균열을 지연시키는 역할을 한다. 반면 보조 뿌리는 기판 사이의 접착력을 강화하고 변형 중에도 인터페이스의 안정성을 유지하도록 돕는다. 이러한 설계는 다양한 변형 상황에서도 높은 기계적 신뢰성과 소자의 성능을 제공한다.
이를 통해 연구팀은 최대 700%까지 늘어나는 신축성을 확보하고, 1,000회 이상의 물리적 변형 시도에도 안정적인 구조를 설계하는데 성공했다. 이 기술은 다양한 물리적 변형(늘림, 비틀림, 압축 등)에도 견딜 수 있도록 설계됐으며, 반복적인 변형에도 긴 사용 수명을 제공할 수 있음을 입증했다.
이 기술은 특히 실시간으로 운동 데이터를 측정할 수 있는 스마트 저항 밴드에 적용하여 사용자의 운동 강도와 균형을 정밀하게 분석할 수 있으며, 다양한 피트니스 활동에 적용할 수 있다.
또한, 스트레처블 LED 디스플레이는 늘림, 구부림, 비틀림 등 여러 변형에도 안정적으로 작동하며, 차세대 유연 디스플레이 기술의 가능성을 보인다. 더불어, 유연한 태양 전지는 에너지를 저장하고 LED를 구동하는 데 성공해, 에너지 하베스팅과 저장 장치로서의 잠재력을 입증했다.
박인규 교수는 “이러한 생체 모사형 설계가 차세대 전자 기술을 위한 새로운 표준이 될 수 있으며, 앞으로 인터페이스 설계의 최적화와 접착력 향상, 더욱 복잡한 뿌리 구조 모방 등을 통해 기술을 발전시켜 나갈 계획이다”라고 밝혔다.
이번 연구는 기계공학과 굴 오스만(Osman Gul) 박사과정이 제1 저자로 참여했으며, KAIST의 박인규 교수, 김택수 교수와 ETRI의 김혜진 박사가 연구를 총괄했다.
연구 결과는 유수의 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 2월 온라인판에 출판됐다. (논문명: Bioinspired Interfacial Engineering for Highly Stretchable Electronics)
(논문 링크 : https://www.nature.com/articles/s41467-025-56502-9)
한편, 이번 연구는 과학기술정보통신부의 지원을 받아 한국연구재단 중견연구자지원사업 및 정보통신기획평가원(IITP)의 지원 아래 수행됐다.
2025.03.06
조회수 4915