< 생명화학공학과 이상엽 교수(왼쪽 위),생명화학공학과 지홍근 박사과정(오른쪽 위),생명화학공학과 김하림 박사과정, 생물공정연구센터 김기배 박사 >
기후 위기와 화석 연료 고갈은 전 세계적으로 지속 가능한 화학물질 생산의 필요성을 높이고 있다. 미국의 BioMADE (바이오메이드) 사업 등 바이오 제조 경쟁력 강화는 전 세계 중요한 국가 과제로 인식되고 있다. 우리 대학 연구진이 미생물 5종을 컴퓨터 시뮬레이션하여 산업에 가장 많이 쓰이는 바이오 연료, 플라스틱 등 원료가 되는 235가지 화학물질을 친환경적으로 생산하는데 성공하였고 상용화 가능성을 제시하여 주목받고 있다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 다양한 산업용 미생물 세포공장의 생산 능력을 가상 세포를 이용해 종합적으로 평가하고, 이를 토대로 특정 화학물질 생산에 가장 적합한 미생물 균주를 선정하고 최적의 대사 공학 전략을 제시했다.
미생물 세포 공장은 재생 가능한 자원을 활용하여 친환경적인 화학물질 생산 플랫폼으로 각광받고 있으며, 미생물을 개량하기 위한 대사공학 기술은 이러한 세포공장 생산 효율을 극대화하는 핵심 도구로 자리 잡고 있다.
그러나 미생물 세포 공장을 구축하기 위해 필요한 균주 선정의 어려움과 복잡한 대사 경로 최적화 등의 문제점은 실질적인 공정 적용에 큰 장애물로 작용하고 있다.
기존 연구에서는 방대한 생물 실험과 정교한 검증 과정을 통해 수많은 미생물 균주 중 최적의 균주와 효율적인 대사공학 전략을 도출하려 했으나, 이 과정은 막대한 시간과 비용이 소요되는 문제점이 있었다.
최근에는 미생물 전체 유전체 정보를 바탕으로 유기체 내 대사 네트워크를 재구성한 유전체 수준의 대사 모델을 이용한 컴퓨터 시뮬레이션으로 대사 흐름을 체계적으로 분석할 수 있게 됨에 따라, 기존의 생물 실험 한계를 극복하고 최적의 균주 선정 및 대사 경로 설계 문제를 혁신적으로 접근할 수 있는 새로운 가능성이 제시되고 있다.
< 유전체 수준 대사 모델을 이용한 미생물 세포 공장 개량 전략 제시 개요 >
이에 생명화학공학과 이상엽 특훈교수 연구팀은 대장균 (Escherichia coli), 효모 (Saccharomyces cerevisiae), 고초균 (Bacillus subtilis), 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 슈도모나스 푸티다 (Pseudomonas putida) 이상 5종의 대표적인 산업 미생물의 화학물질 생산 능력을 235가지 유용 물질을 대상으로 종합적으로 평가했다.
연구팀은 유전체 수준의 대사 모델을 이용하여 이들 미생물이 생산할 수 있는 화학물질의 최대 이론 수율과 실제 공정에서 달성 가능한 최대 수율을 계산하여 각 화학물질 생산에 가장 적합한 균주를 선정할 수 있는 기준을 마련하였다.
연구팀은 특히 타 생물에서 유래한 효소 반응을 미생물에 도입하거나, 미생물이 사용하는 보조인자를 교환하여 대사 경로를 확장하는 전략을 제안했다.
이러한 전략을 통해 기존 미생물의 선천적 대사능력을 초과하는 수율 향상이 가능함을 확인했으며, 메발론산, 프로판올, 지방산, 아이소프레노이드와 같은 산업적으로 중요한 다양한 화학물질의 생산 수율이 증가했다.
또한 연구팀은 가상세포 내 대사흐름 분석 기법을 사용하여 각 화학물질 생산을 극대화 시키기 위해 필요한 균주 개량 전략을 제시하였다. 특정 효소 반응과 목표 화학물질 생산의 상관관계 및 효소 반응과 대사물질 간 관계를 정량적으로 분석하여 상향 및 하향 조절해야할 효소 반응을 도출하였다.
< 대표적 산업 미생물을 활용한 유용 화학물질 생산 경로와 최대 수율 비교 >
이를 통해 연구팀은 단순히 높은 이론적 수율뿐 아니라 실제 생산능을 극대화할 수 있는 구체적인 전략을 제시했다.
이번 논문의 제 1저자인 김기배 박사는 “타 생물에서 유래한 대사 경로의 도입과 보조인자 교환 전략을 활용하면 기존 한계를 뛰어넘는 새로운 미생물 세포공장을 설계할 수 있다.”며, “본 연구에서 제공하는 전략은 미생물 기반 생산 공정을 더욱 경제적이고 효율적으로 발전시키는데 핵심적인 역할을 할 것”이라고 설명했다.
또한, 이상엽 특훈교수는 “이번 연구는 시스템 대사공학 분야에서 미생물 균주 선정과 대사경로 설계 단계에서 어려움을 줄이고, 보다 효율적인 미생물 세포공장 개발을 위한 핵심 참고자료가 될 것”이라며, “향후 바이오 연료, 바이오플라스틱, 기능성 식품 소재 등 다양한 친환경 화학물질 생산 기술 개발에 크게 기여할 것으로 기대된다.” 고 밝혔다.
생물공정연구센터 김기배 박사가 참여한 이번 논문은 국제 학술지 네이처(Nature) 誌가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 동료 심사를 거쳐 3월 24일 字 게재됐다.
※ 논문명 : 미생물 세포 공장의 역량에 대한 종합적 평가 (Comprehensive evaluation of the capacities of microbial cell factories)
※ 저자 정보 : 김기배 (한국과학기술원, 제1 저자), 김하림 (한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3 명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제의 지원, 그리고 합성생물학핵심기술개발 사업의‘바이오제조 산업 선도를 위한 첨단 합성생물학 원천기술 개발’과제의 지원을 받아 수행됐다.
효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다. 우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다. *방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자 이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, P
2024-08-26우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다. 연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다. 현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나
2024-07-04가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기
2024-04-12