< 염지현 신소재공학과 교수(좌), 권준영 신소재공학과 박사(우) >
기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다.
우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다.
신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집약한 고속·고지능·저전력 AI 시스템 구현의 핵심 기술로 향후 광 암호화, 보안 통신, 양자 정보처리에도 활용될 수 있다.
이번에 개발된 카이랄 자성 양자점은 은황화물(Ag2S) 기반의 무기 나노입자에 카이랄 유기물인 L-또는 D-시스테인을 도입해 합성한 것으로 빛의 편광 방향(원형 편광)에 따라 서로 다르게 반응하는 특성을 지닌다. 특히, 405, 488, 532 nm 등 가시광 전 영역에서 각각의 편광(LCP, RCP)에 따라 상이한 반응을 보여, 다채널 인식이 가능한 신경 시냅스 소자 플랫폼으로 활용할 수 있다. 또한, 물을 기반으로하여 친환경적으로 합성하고 그 안정성이 높다는 것에 상업적으로 큰 차별점이 있다.
연구팀은 실리콘 위에 카이랄 자성 양자점을 활용한 은황화물층과 유기 반도체 펜타신을 적층한 시냅스 트랜지스터 구조를 제작했다. 해당 소자는 빛을 가하면 장기기억 특성(LTP)을 보이고 전기 펄스를 인가하면 초기화 되는 전기 소거 기능도 구현하여 뇌처럼 학습하고 적응할 수 있는 기능을 빛을 이용해서 인공적으로 만드는데 성공했다.
< 카이랄 자성 양자점을 이용하여 제작한 뇌 모사 뉴로모픽 ChiropS 소자 모식도. 원형편광 방향성 및 다양한 파장을 이용하여 높은 집적도와 효과적인 에너지 절감을 구현 >
또한, 반복하여 아주 짧은 시간동안 광 펄스(레이저 빛)을 비추게 되면 점진적으로 전류가 누적되며 단계적으로 증가하는 멀티 레벨 상태를 형성하였고, 이는 뇌처럼 인공지능이 학습하게 하는 시냅스 가중치 조절이 되고 다중 학습도 가능함을 의미한다.
연구팀은 2×3 소자 어레이를 제작해 서로 다른 편광과 파장의 빛을 각각 비추었을때, 각 소자의 응답 전류가 뚜렷이 구분되는 것을 확인했다. 6개의 채널을 통해 총 9개의 정보를 병렬로 감지하고 처리할 수 있어, 기존 대비 최소 9배 이상의 정보량 처리가 가능함을 밝혔다.
더 나아가, 이 소자는 빛(광)을 일정하게 받아도 복잡한 판단을 해주는 스마트 센서처럼 반응을 했다. 예를 들어, 이는 잡음(노이즈)을 걸러내고 신호를 증폭할 수 있는 기능을 소자 자체에 내장하고 있는 것처럼 자동 필터하는 역할을 한다. 실제로 손글씨(MNIST) 데이터에 잡음과 같은 가우시안 노이즈를 추가하고 소자에 통과시킬 경우, 고주파 잡음이 줄고 핵심 정보만 살아남는 효과가 확인되었다. 이를 통해 기존 컴퓨팅 기술 대비 최대 30% 적은 전력으로 구동이 가능했다고 밝혔다.
이번 연구는 광학적 카이랄성과 자기적 스핀 특성을 하나의 나노소재에 융합함으로써, 기존에 구현되지 않았던 편광 구분 기능과 장기 기억 성능을 동시에 확보할 수 있다. 단일 소자에 감지(보기), 처리(판단), 기억(저장), 초기화(지우기) 기능 기능이 통합되어 있어 향후 고성능 인공지능 하드웨어를 더 작고 효율적으로 만들 가능성도 높다고 평가된다.
< 카이랄 Ag2S CFQDs의 합성 및 광전자 특성 분석, a) 카이랄 Ag2S CFQDs의 합성 과정 모식도. b) L-시스테인을 카이랄 매개분자로 사용하여 합성한 Ag2S CFQDs의 고해상도 주사투과전자현미경 사진. 약 5 nm 크기의 양자점인 것을 알 수 있다. c) 해당 이미지의 고속 푸리에 변환(FFT, Fast Fourier Transform) 사진으로, 양자점 내부에 원자수준의 결함이 잘 유도된 것을 확인할 수 있다. d) L-Cys-Ag2S CFQDs의 자기적 성질을 보여주는 히스테리시스 곡선. e) L-, D-, DL-Cys-Ag2S CFQDs의 g-인자 스펙트럼. L-과 D-가 반반 섞인 DL-시스테인을 사용한 양자점의 경우 카이랄 광학적 활성 시그널이 없는 것을 볼 수 있고, L-과 D-를 각각 사용하여 합성한 양자점은 거울상으로 대칭이 되는 시그널이 잘 나오는 것을 확인할 수 있다. f) L-Cys-Ag2S CFQDs의 엑시톤 전이를 보여주는 원형 이색성(CD, Circular Dichroism), 형광 검출 원형 이색성(FDCD, Fluorescence Detected Circular Dichroism), Gaussian 피팅된 광여기 발광(PLE, Photoluminescence Excitation) 스펙트럼. 연구진이 유도한 원자수준 결함을 통해 양자점 내에 다양한 에너지 레벨이 생성되어, 시냅스를 구동할 때 다양한 파장을 활용할 수 있게 하는 장점이 있다. g) 펜타신/Ag2S/SiO2/Si 소자의 단면 주사 전자 현미경(SEM, Scanning Electron Microscopy) 이미지 (펜타신(50 nm)/Ag2S(50 nm)/SiO2 (100 nm)/Si). h) 초기 전자 상태에서의 에너지 밴드 구조 모식도. 암실 조건에서의 광 강화 및 전기적 삭제 동작 시연 >
염지현 교수는“기존 양자점의 한계를 극복하기 위해 광학적 카이랄성과 자기적 스핀 특성을 융합한 새로운 개념의 양자점을 설계했다”며 “단일 소자가 다중 편광과 다중 파장을 처리할 수 있고, 전기 신호로 초기화할 수 있는 기능까지 통합한 만큼 저전력·고정밀 AI 시스템 구현을 위한 혁신적 플랫폼이 될 수 있다”고 강조했다.
이번 연구는 국립부경대학교 나노융합공학전공 권준영 교수(전. KAIST 박사후연구원)와 KAIST 신소재공학과 김경민 교수 연구팀의 전재범 박사가 제1 저자로 참여했으며, 해당 논문은 국제 학술지 어드밴스드 머티리어스(Advanced Materials)에 4월 7일자 온라인 게재되었다.
※ 논문명 : Chiroferromagnetic Quantum Dots for Chiroptical Synapse
※ DOI : https://doi.org/10.1002/adma.202415366
이번 연구는 과학기술정보통신부, 한국연구재단 우수신진연구지원사업과 삼성전자 등의 지원을 받아 수행되었다.
< 2 × 3 ChiropS 배열에서의 6채널 광 시냅스 작동 시연. a) L-시스테인 기반 Ag2S CFQDs(Chiral Ferromagnetic Quantum Dots)로 구성된 2 × 3 시냅스 배열의 소자 구조 개략도. 여섯 개 개별 소자는 각각 왼원편광, 오른원편광 및 세 가지 파장(405, 488, 532 nm)의 빛에 대응하는 여섯 채널에 할당되었다. b) 여섯 가지 조명 조건 하에서 다양한 게이트 전압에 따른 드레인 출력 전류. c) 여섯 채널에서 네 번의 프로그램/삭제(P/E) 사이클 동안의 동적 P/E 시연 결과. d) 여섯 시점(초기 삭제 상태, 네 번의 프로그래밍 상태, 최종 삭제 상태)에서의 각 시냅스에 걸린 전류를 색으로 표현한 히트맵 사진. >
기존의 의료용 나노 소재는 체내에서 잘 전달되지 않거나 쉽게 분해되는 문제가 있었다. 우리 연구진은 카이랄 나노 페인트 기술로 의료용 나노 소재에 카이랄성을 부여한 자성 나노 입자를 개발했다. 그 결과 항암 온열 치료 효과가 기존보다 4배 이상 향상됐고, 약물 전달 시스템에도 적용하여 코로나 19 백신 등 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 신소재공학과 염지현 교수 연구팀이 바이오 나노 소재의 표면에 카이랄성*을 부여할 수 있는 ‘카이랄 나노 페인트’기술을 최초로 개발했고 후속 연구로 생명과학과 정현정 교수팀과 함께 mRNA를 전달하는 지질전달체** 표면에도 성공적으로 도입했다고 19일 밝혔다. 이 연구들은 각각 국제 학술지 ACS Nano와 ACS Applied Materials & Interfaces 에 게재됐다. *카이랄성(Chirality): 카이랄성은 물체가 거울에 비친 모습과 겹치지 않는 성질을
2025-03-19기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다. *아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용 우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다. *아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술 화학적으로 합성된
2025-01-08생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다. *리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질. InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유
2024-12-18자연에서 일어나는 대부분의 화학 반응은 에너지적으로 안정한 형태를 취하는 방향으로 진행된다. 그렇기에 상대적으로 불안정한 구조를 가진 세큐린진 B의 합성은 매우 도전적인 과제다. 우리 연구진이 천연물 합성 원리를 바탕으로 빛으로 on/off가 가능한 분자 스위치 신소재 원천기술을 확보했다. 우리 대학 화학과 한순규 교수와 윤동기 교수 공동연구팀이 항암 및 퇴행성 뇌 질환 치료 효과로 학계의 꾸준한 관심을 받고있는 세큐리네가 알칼로이드 천연물 군에 속하는 세큐린진(securingine) B의 합성 방법을 세계 최초로 밝혀내고, 이 과정에서 발견한 화학적 반응성을 응용해 새로운 타입의 분자 광스위치를 개발했다고 11일 밝혔다. 한 교수 연구팀은 천연물 합성에 머무르지 않고 이 분자 재배열 원리를 바탕으로 서로 다른 파장의 빛을 통해 가역적으로 형태와 성질이 바뀌는 분자 광스위치를 고안했다. 천연물에 전자주개 치환기*를 달자 가시광선 영역의 빛을 흡수하면서, 무색인 기본 천
2024-11-11