< (왼쪽부터) 화학과 한순규 교수, 이유진 석박사통합과정, 김태완 석박사통합과정 >
‘허포트리콘’은 뇌 속 염증을 억제하고 신경세포를 보호하는 작용이 뛰어난 물질로 치매나 파킨슨병과 같은 퇴행성 뇌 질환 치료제로 발전할 가능성이 크다고 평가받고 있다. 이 물질은 콩벌레와 공생하는 곰팡이에서만 극미량 얻을 수 있는데, 우리 연구진이 이 희귀 천연물을 화학 합성* 하는데 성공해, 차세대 신경퇴행성 질환 약물 개발의 가능성을 제시했다.
*화학 합성: 화학 반응을 이용하여 원하는 물질을 만드는 과정
우리 대학 화학과 한순규 교수 연구팀이 콩벌레와 공생하는 곰팡이에서 발견된 천연 항신경염증 물질 ‘허포트리콘(herpotrichone) A,B,C’를 세계 최초로 합성하는 데 성공했다고 31일 밝혔다.
< 그림 1. 본 연구의 핵심사항 요약 >
허포트리콘 천연물은 콩벌레의 공생균인 ‘허포트리시아(Herpotrichia) sp. SF09’에서만 극미량으로 얻을 수 있는 물질로, 다섯 개의 고리 구조(6각형 4개와 3각형 1개)인 6/6/6/6/3의 다중고리 구조를 가진 물질이다.
흥미롭게도 이 물질은 뇌 염증반응을 억제하는 항신경염증 효과가 매우 우수하며, 최근에는 철분 매개 세포 사멸(ferroptosis)을 억제해 신경세포를 보호하는 작용기전까지 확인돼, 뇌 질환 치료용 약물로써의 가능성이 기대되고 있다.
한 교수 연구팀은 곰팡이에서 이 물질이 만들어지는 방식을 예상하여, 허포트리콘의 복잡한 구조를 연구실에서 화학적으로 만드는 방법을 고안했다. 이때 핵심이 된 것은 ‘딜스-알더(Diels–Alder) 반응’이라는 화학 반응이다. 이 반응은 마치 두 개의 퍼즐 조각이 맞물려 하나의 고리를 만들듯, 탄소 기반 파트너끼리 새로운 결합을 만들어 육각고리 구조를 형성하게 해주는 반응이다.
또한, 연구팀은 ‘수소결합’이라는 분자 사이의 약한 끌어당김 현상에 주목했다. 이 수소결합을 섬세하게 설계하고 조절함으로써, 반응이 원하는 방향과 위치에서만 일어나도록 정교하게 유도해서 허포트리콘을 만들 수 있었다.
< 그림 2. 허포트리콘 A,B,C의 수소결합 기반 핵심합성 전략 >
연구팀은 기존에 핵심수소 결합 없이는 목표 천연물이 거의 안 만들어지거나 엉뚱한 부산물만 생겼던 문제를 해결하고, 복잡한 구조의 허포트리콘 A, B, C를 모두 정확하게 합성할 수 있었다.
특히, 허포트리콘을 만들기 위한 핵심 재료인 ‘델리트파이론(delitpyrone) C’와 ‘에폭시퀴놀 단량체(epoxyquinol monomer)’라는 분자들이 어떤 구조를 가질 때 핵심 수소결합이 가능한지 정밀하게 분석했다.
이렇게 유도된 수소결합 덕분에 반응 분자들이 정확한 위치로 다가가고 이상적인 전이상태를 거쳐 허포트리콘 C가 합성 가능했다. 이 반응 원리를 허포트리콘 A와 B에도 적용해 성공적으로 이들 천연물을 합성할 수 있었다.
연구실에서 행해진 핵심 딜스-알더 반응 과정에서 자연계에서는 아직 발견되지 않은 새로운 분자 구조들도 함께 만들어졌고, 이 중 일부는 우수한 약리 활성을 갖는 신규 천연물일 가능성이 높아 합성을 통해서 천연물을 예측한다는 측면에서 본 연구의 의미가 배가된다.
실제로 한 교수 연구팀은 2019년에 허포트리콘 A와 B를 발견하고 이들의 구조를 밝힌 중국 연구진의 논문을 바탕으로, 이들 천연물의 합성 연구를 진행했는데 그 과정에서 원치 않던 특정 부산물이 계속적으로 얻어졌다.
그런데 2024년 같은 중국 연구진에 의해 허포트리콘 C라는 신규 천연물의 발견이 논문으로 보고됐는데, 이것은 한 교수 연구팀이 이전에 얻었던 부산물과 일치하는 물질이었다. 이는 한 교수팀이 자연계에 존재하는 천연물을 실험실에서 이미 합성하고 있었던 것을 보여주는 사례다.
화학과 한순규 교수는 “이번 성과는 퇴행성 신경질환 관련해 약리 활성을 갖는 자연계 희귀 천연물을 최초로 합성하고, 복잡 천연물의 생체모방 합성 원리를 체계적으로 제시한 연구”라며, “앞으로 천연물 기반 항신경염증 치료제 개발과 해당 천연물군의 생합성 연구에도 폭넓게 활용될 것으로 기대된다”고 밝혔다.
해당 연구 성과는 화학과 석박사통합과정 이유진 학생이 제1 저자로 화학 분야 최고 권위 학술지 중 하나인 미국화학회지(Journal of the American Chemical Society, JACS)에 7월 16일 字 게재됐다.
※논문명: Total Synthesis of (+)-Herpotrichones A–C
※DOI: 10.1021/jacs.5c05061
한편, 이번 연구는 한국연구재단(NRF) 중견연구자지원사업, KAIST UP 프로젝트, KAIST 그랜드챌린지(Grand Challenge) 30 프로젝트, 및 KAIST 초세대협업연구실사업의 지원을 받아 수행됐다.
기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10우리 대학 산업디자인과 박현준 교수 연구팀인 ‘무브랩(Move Lab)’이 차세대 웨어러블 로봇 디자인 ‘엔젤로보틱스 WSF1 비전 콘셉트(VISION Concept)’로 세계적 권위를 자랑하는 ‘2025 레드닷 디자인 어워드(Red dot Design Award)’에서 디자인 콘셉트-프로페셔널(Design Concept-Professional) 부문 ‘베스트 오브 더 베스트(Best of the Best)’를 수상했다고 8일 밝혔다. 독일의 ‘레드닷 디자인 어워드’는 세계에서 가장 잘 알려진 디자인 공모전 중 하나로, 독일 iF 디자인 어워드, 미국 IDEA와 함께 세계 3대 디자인 어워드로 꼽힌다. ‘베스트 오브 더 베스트(Best of the Best)’상은 해당 부문에서 최고의 디자인에 수여되는 상으로, 레드닷 어워드 전체 수상작 중에서도 극
2025-08-08기계공학과 구승범 교수 연구팀이 지난 7월 스웨덴 스톡홀름에서 개최된 제30회 국제생체역학회(International Society of Biomechanics, ISB) 학술대회에서 Clinical Biomechanics Award를 수상했다. 제1 저자인 박사과정 오정석 군이 Plenary 강연을 했다. 본 연구는 삼성서울병원 정형외과 왕준호 교수 연구팀과의 공동 연구로 수행됐다. 이번 연구에서는 정상 성인 10명과 전방십자인대(ACL) 파열 후 전외측인대(ALL)를 포함한 재건술을 받은 환자 10명을 대상으로, 고속 이중 평면 엑스선 영상과 3차원 관절 운동 분석을 통해 보행 시 무릎 관절의 운동을 정밀하게 측정하였다. 분석 결과, 환자군에서는 정상군에 비해 과도한 전방 이동 및 내측 회전 운동이 나타났으며, 이는 수술 이후에도 정상적인 관절 접촉 운동이 완전히 회복되지 않았음을 시사한다. 이러한 결과는 해당 환자군에서 빈번히 보고되는 조기 슬관절 골관절염의 발생 메커니
2025-08-07메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다. 우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다. 메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 &lsq
2025-08-07기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다. 우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다. 기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충
2025-07-16