< (왼쪽부터) 우리 대학 명재욱 교수, 우리 대학 박선호 박사과정, 스탠퍼드 대학교 Chungheon Shin 박사, 스탠퍼드 대학교 Craig S. Criddle 교수 >
메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다.
메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 ‘편성(obligate) 메탄산화균’은 메탄이나 메탄올과 같은 C1 화합물만을 성장 기질로 활용하는 것이 특징이다. 지금까지 이러한 편성 메탄산화균이 비(非)성장 기질인 에탄에 어떻게 반응하는지에 대한 연구는 이뤄지지 않았다.
연구팀은 이번 연구에서는 C2 기질인 에탄이 성장 기질로 사용되지 않음에도 불구하고, 편성 메탄산화균의 메탄 산화, 세포 성장, 생분해성 고분자인 폴리하이드록시부티레이트(Polyhydroxybutyrate, 이하 PHB) 합성 등 주요 대사 경로에 유의미한 영향을 미친다는 사실을 밝혀냈다.
< 그림 1. 본 연구는 자연 및 인공환경에서 에탄(C2H6)이 메탄과 함께 빈번하게 혼합 배출된다는 점에 주목하여, 에탄이 편성 메탄산화균 Methylosinus trichosporium OB3b의 대사에 미치는 영향을 규명하였다. 그림 상단과 배경에 표현된 가스 파이프라인은 메탄과 에탄이 공존하는 천연가스 시설을 나타내며, 이들이 복합 기질로써 메탄산화균에 동시에 공급되고 있음을 상징한다. 세포 내 과립 형태로 표현된 물질은 메탄산화균이 축적하는 생분해성 고분자인 폴리하이드록시부티레이트(PHB)를 의미한다. PHB는 자연 및 인공환경에서 완전 생분해되는 플라스틱으로, 오늘날 산업·의료·농업 등 다양한 분야에서 활용되고 있다. 그림은 세포 내 PHB 과립이 생분해성 플라스틱임을 시각화했으며, 플라스틱 병이 토양에서 무해하게 분해되는 모습을 연출함으로써 해당 플라스틱의 생분해 가능성을 강조하였다. >
연구팀이 다양한 메탄 및 산소 농도 조건에서 에탄을 첨가해 메탄산화균을 배양한 결과, ▲세포 성장 억제 ▲메탄 소비 감소 ▲PHB 합성 증가의 세 가지 대사 반응이 일관되게 나타났으며, 이러한 변화는 에탄 농도가 증가할수록 더욱 두드려졌다.
이번 연구에 따르면, 에탄은 단독으로는 메탄산화균에서 반응하지 않으며, 세균 역시 에탄만 주어졌을 때는 성장하지 않는다. 그러나 메탄과 함께 존재할 경우, 메탄을 산화하는 핵심 효소 ‘입자상 메탄모노옥시게네이스(pMMO)’를 통해 에탄이 함께 산화되는 ‘동시 산화(co-oxidation)’현상이 관찰됐다.
에탄이 산화되는 과정에서 생성되는 중간 대사산물 ‘아세테이트(acetate)’는 메탄산화균의 세포 성장을 억제하는 동시에, PHB(Polyhydroxybutyrate) 생산을 촉진하는 것으로 나타났다. PHB는 생분해성 바이오플라스틱의 원료로 주목받는 고분자 물질이다.
< 그림 2. 에탄 농도 증가에 따른 편성 메탄산화균 Methylosinus trichosporium OB3b의 메탄 및 에탄 소모 감소, 세포 성장 저해, PHB 합성 증가 >
이러한 작용은 균이 처한 영양 상태에 따라 상반된 양상을 보인다. 영양이 충분한 상태에서는 에탄이 세포 성장에 부정적인 영향을 미치지만, 영양 불균형 상태에서는 오히려 PHB 축적을 유도해 긍정적인 효과를 나타낸다.
한편, 에탄을 첨가했을 때 메탄의 소비량은 감소했지만, 메탄 분해 효소인 pMMO를 구성하는 pmoA 유전자의 발현량에는 유의미한 변화가 없었다. 이는 에탄이 유전자의 전사(transcription) 수준에서는 영향을 미치지 않으며, 대신 효소의 실제 작동 능력(활성 수준)이나 전사 이후 조절 단계에서 영향을 준다는 사실을 입증한다.
연구팀은 에탄이 메탄산화균의 대사 흐름을 간접적으로 조절하는 조절자 역할을 하며, 메탄과 함께 있을 때 의도치 않은 방식으로 세포 성장과 PHB 생산에 영향을 미친다고 분석했다.
< 그림 3. 에탄의 의한 편성 메탄산화균 대사 변화의 원인 규명 : 아세테이트에 의한 탄소 동화 변화(파란 박스), 세포 내 환원력 고갈(빨간 박스), pmoA 발현량 평가(초록 박스) >
명재욱 교수는 “이번 연구는 ‘편성 메탄산화균’이 단일 기질 환경이 아닌 에탄과의 복합 기질 조건에서 어떻게 대사적으로 반응하는지를 체계적으로 규명한 최초의 사례”라며, “에탄과 같은 비성장 기질이 메탄 대사와 생분해성 고분자 생산에 미치는 영향을 밝힘으로써, 생물학적 메탄 저감 기술뿐 아니라 바이오플라스틱 생산에도 새로운 가능성을 제시한다”라고 전했다.
건설및환경공학과 박사과정 박선호 학생이 제1 저자인 이번 연구는 환경미생물학 및 생명공학 분야의 권위 있는 미국미생물학회(American Society for Microbiology) 학회지인 국제 학술지 응용 환경미생물학(Applied and Environmental Microbiology)에 7월 10일 자로 게재됐다.
※ 논문명: Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph Methylosinus trichosporium OB3b upon nutrient availability
(저자 정보 : 박선호(KAIST, 제1 저자), Chungheon Shin(Standford University), Craig S. Criddle (Standford University), 명재욱(KAIST, 교신저자) 총 4명)
※ DOI: 10.1128/aem.00969-25
한편, 이번 연구는 한국연구재단, 국토교통부, 해양수산부의 지원을 받아 수행됐다.
2013년부터 시행된 미국 내 최대 규모의 온실가스 감축 정책으로 캘리포니아주의 탄소배출권 거래제도*가 있다. KAIST와 국제공동연구진은 이 제도가 예상치 못한 환경부작용을 초래하며 기업들의 독성물질 배출을 최대 40% 증가시켰다는 점을 처음으로 밝혀냈다. *탄소배출권 거래제도(Cap and Trade Program): 온실가스 배출 총량 상한(cap)을 설정하고 이를 기업들에게 자체 감축 노력을 통해 배출을 줄이거나 거래(trade)할 수 있는 제도임 우리 대학 기술경영학부 이나래 교수가 미네소타 주립대 아심 카울(Aseem Kaul) 교수와 공동연구를 통해서, 탄소배출권 거래제도가 온실가스 감축에는 기여했지만, 예상치 못한 또 다른 환경 문제를 유발할 수 있다는 점을 실증적으로 밝혔다. 탄소배출권 거래 제도는 시장 원리를 활용해 비용 효율적으로 온실가스를 줄이고, 동시에 경제적 유인을 제공함으로써 지속적인 환경 개선을 도모하는 것이 목적으로 만들어졌다. 연구팀은
2025-05-09한국 산업 부문이 2050년까지 탄소중립 목표를 달성하기 위해 철강, 화학, 시멘트 등 주요 산업에서 구체적인 탈탄소화 경로를 제시한 연구가 국제 학술 저널 Journal of Cleaner Production에 발표되었다. KAIST 지속가능 녹색성장대학원 엄지용 교수가 이끄는 국제 연구팀이 발표한 이번 연구는, 향후 2035년 국가 온실가스 감축 목표(NDC) 수립에 중요한 역할을 할 것으로 기대된다. 연구진은 Global Change Assessment Model (GCAM)[1]을 사용하여 한국 산업 부문의 온실가스 감축 전략을 분석했다. 이 연구는 철강과 화학, 시멘트 부문을 중심으로 산업별 탄소 배출 특성을 분석하고, 탄소 포집 및 저장(CCS) 기술[2]과 청정에너지 기반의 수소 기술을 활용해 어떻게 각 부문이 탄소중립을 달성할 수 있을지를 구체적으로 탐색했다. 이번 연구의 제1 저자인 이한주 씨는 "본 연구는 반도체 산업을 포함한 한국의 산업 세부 업종을 학계
2024-10-10기후변화를 포함한 환경 및 에너지 문제에 직접 맞닿아 있는 온실가스 전환 기술은 주로 G7 국가를 비롯한 OECD 회원국들을 중심으로 최근 많은 논의가 이뤄지고 있으며, 대한민국 역시 2050년까지 탄소중립 글로벌 스탠다드 달성을 위해 산・학・연 및 민・관 협력 연구를 활발히 촉진하고 있다. 대기 중의 온실가스를 제거함과 동시에, 미래 청정 연료로 주목받는 메탄올 합성에 필요한 이산화탄소 분해 반응은 탄소중립 달성을 위한 산업계 패러다임 전환 대응에 필요한 핵심 기술이지만, 이산화탄소 분자가 화학적으로 매우 안정된 탓에 공업적으로 유용한 화학 물질로의 전환은 여전히 난제로 여겨진다. 우리 대학 화학과 박정영 교수 연구팀이 광주과학기술원 (GIST) 물리·광과학과 문봉진 교수 연구팀과 공동연구를 통해 초미세 계단형 구리(Cu) 촉매 표면이 이산화탄소(CO2) 분자를 보다 효과적으로 분해할 수 있음을 입증했다고 26일 밝혔다. 포집된 온실가스의 전환은 일반적으로
2023-06-26우리 대학 조천식녹색교통대학원은 미세먼지 및 온실가스 발생의 주요 원인인 경유 소형화물차(적재중량 1톤 미만)를 하이브리드 경유-전기 트럭으로 개조해 배출가스를 줄이고 연비를 개선할 수 있는 기술을 개발했으며, 이를 제주특별자치도 내 물류 배송환경에서 실증한다고 밝혔다. 하이브리드 경유-전기 트럭 개조기술은 국토교통부가 주관하고, 국토교통과학기술원이 지원하는 '택배 차량용 디젤 트럭의 하이브리드 개조기술 개발 및 실용화 연구' R&D 사업을 통해 개발됐다. 이에 조천식녹색교통대학원 장기태 교수 연구진은 운행 중인 경유 소형화물차를 개조(튜닝)하여 경유엔진과 전기모터를 혼용하는 하이브리드 기술의 개발을 완료, 지난 7월 초 한국 교통안전공단 자동차안전연구원의 안전성 확인과 승인 검사를 완료한 바 있다. 이번에 제주 지역에서 진행되는 실증은 하이브리드 경유-전기 트럭을 실제 물류배송 환경에서 운행하면서 성능 및 안전성을 검증하고, 연비 개선 및 배출가스 저감 효과를
2020-07-13우리 대학 연구진이 지구온난화의 주범 기체인 이산화탄소를 에틸렌이나 에탄올, 프로판올과 같이 산업적으로 고부가가치를 지닌 다탄소화합물로의 효율적 전환이 가능한 새로운 실마리를 찾아냈다. 이산화탄소 농도조절만을 통해 다탄소화합물 선택도를 크게 높인 이 기술이 실용화되면 `산업의 쌀'이라 불리는 에틸렌이나 살균, 소독용이나 바이오 연료로 사용되는 에탄올, 화장품과 치과용 로션이나 살균·살충제에 사용되는 프로판올 등을 생산하는 기존 석유화학산업의 지형에 큰 변화를 불러올 것으로 기대가 크다. 우리 대학 신소재공학과 오지훈 교수 연구팀은 이산화탄소 전기화학 환원 반응 시, 값싼 중성 전해물(전해질)에서도 다탄소화합물을 선택적으로 생성할 수 있는 공정을 개발했다. KAIST에 따르면 오 교수 연구팀은 중성 전해물을 사용해 구리(Cu) 촉매 층 내부의 이산화탄소 농도를 조절한 결과, 기존 공정과 비교해 각각 이산화탄소 전환율은 5.9%에서 22.6%로, 다탄소화합물 선택도
2020-06-04