〈 김 일 두 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다.
이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다.
이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다.
김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다.
혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다.
호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다.
호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다.
하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다.
기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다.
연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다.
이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다.
특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다.
예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다.
연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다.
특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다.
연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다.
16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다.
김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다.
또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다.
이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다.
본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다.
□ 그림 설명
그림1. 어카운트 오브 케미칼 리서치 표지 이미지
그림2. 다종 입자 촉매
그림3. 함금촉매 합성
그림4. 다종센서 어레이_날숨 분석 센서
급성 질병의 조기 진단과 만성 질환의 효율적 관리를 위해, 환자 가까이에서 신속하게 진단할 수 있는‘현장진단(Point-of-Care, POCT)’기술이 전 세계적으로 주목받고 있다. POCT 기술의 핵심은 특정 물질을 정확히 인식하고 반응하는‘효소’에 있다. 그러나 기존의 ‘자연효소’는 고비용·불안정성의 한계를 지니며, 이를 대체하는 ‘효소 모방 촉매(nanozyme)’ 역시 낮은 반응 선택도라는 문제를 안고 있다. 최근 국내 연구진은 기존 효소모방촉매보다 38배 이상 향상된 선택도를 구현하고, 단 3분 만에 육안으로 진단 결과를 확인할 수 있는 고감도 센서 플랫폼을 개발하는 데 성공했다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수, 가천대학교 김문일 교수 연구팀과의 공동연구를 통해, 과산화효소 반응만을 선택적으로 수행하면서도 높은 반응 효율을 유지하
2025-07-29기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다. 이번 연구는 세포 내 다양한 생
2025-07-23백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다. 우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다. 연구진은
2025-07-22전 세계적으로 매년 수십억 개의 타이어가 폐기되며, 이는 심각한 환경오염의 주요 원인 중 하나로 지목되고 있다. 우리 연구진이 폐타이어를 고무나 나일론 섬유 원료로 쓰이는 고부가가치 화학 원료인 고순도의 고리형 알켄으로 선택적 전환하는 데 성공했다. 이는 폐타이어 재활용 분야의 새로운 전환점으로 평가된다. 우리 대학 화학과 홍순혁 교수 연구팀이 이중 촉매 기반 연속 반응 시스템을 개발해 폐타이어 문제를 효과적으로 해결했다고 26일 밝혔다. 폐타이어는 합성고무와 천연고무의 복합체로 구성되며, 실리카, 카본블랙, 산화방지제 등의 첨가제를 포함해 물리적 강도와 내구성이 극대화되어 있다. 특히 가황 공정을 통해 고무 사슬 간의 가교가 형성돼 열과 압력에 강한 구조를 갖게 되는데, 이는 폐타이어의 화학적 재활용을 어렵게 만드는 주요 원인 중 하나다. 그동안 폐타이어의 재활용은 주로 열분해 방식이나 물리적 분쇄 재활용에 의존해 왔다. 열분해 방식은 350~800°C의 고온
2025-06-26임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16