〈 김 형 수 교수 〉
우리 대학 기계공학과 김형수 교수 연구팀이 알코올과 물이 만날 때 발생하는 마랑고니 효과의 현상을 정량화하는 데 성공했다.
이 기술을 통해 계면활성제의 광범위한 사용을 억제하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 기대된다.
이번 연구 결과는 미국 프린스턴 대학의 하워드 스톤(Howard Stone) 교수와 공동으로 진행됐고 국제 학술지 ‘네이처 피직스(Nature Physics)’ 7월 31자 온라인 판에 게재됐다.
마랑고니 효과는 계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 와인의 눈물 현상이 대표적인 마랑고니 효과이다.
물과 알코올처럼 서로 100% 섞이는 액체들은 만나는 즉시 혼합과 퍼짐이 동시에 이뤄지는 것처럼 보이지만 사실은 그렇지 않다. 실제 물의 표면장력은 알코올보다 3배 정도 큰데 이 표면장력 차이 때문에 두 액체가 닿는 순간 계면에서 마랑고니 효과가 발생한다. 이후 혼합이 일어나기까지는 일정 시간이 소요된다.
이와 같은 현상은 20세기 초반에 보고된 후 많은 논의가 됐지만 복잡한 물리화학적 혼합 현상을 정량화하는 데 한계가 있었다.
김 교수는 광학의 특성을 이용한 다양한 유동장 가시화(Flow visualization) 기법과 초고속 이미징 장비를 이용해 실험을 수행했다.
유동장 가시화는 물과 같은 투명한 액체가 얼마나 빠르게 흐르는지 파악하기 위해 입자를 띄워서 이들을 추적하거나 액체의 밀도차이 변화를 광학적 기법을 이용해 감지한 후 촬영하는 방식이다.
이를 통해 물과 알코올 사이에 발생하는 복잡한 물리화학적 현상의 정량화에 성공했고 이를 토대로 실험 결과를 예측하는 이론 모델도 개발했다.
이론 모델을 이용해 마랑고니 대류 유동 속도의 세기와 알코올 액적의 퍼지는 넓이, 유동장이 발달되는데 소요되는 시간을 예측할 수 있다. 이를 통해 실제 적용 상황과 조건에 맞춰 마랑고니 효과 유발 물질(알코올)의 종류와 액적의 크기를 설계할 수 있다.
연구팀은 이번 성과가 유체 계면을 2차 오염시키지 않고 계면에 따라 원하는 물질을 높은 효율로 쉽게 전달하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 예상했다.
무엇보다 이번 연구 결과는 약물 전달을 위해 사용되는 계면활성제를 알코올이 대체할 수 있는 가능성을 보였다는 의의가 있다. 체내에 축적되는 특성을 갖는 계면활성제를 대체할 수 있다면 여러 부작용을 방지할 수 있을 것으로 기대된다.
김 교수는 “약물전달을 위해 계면활성제를 사용하는데 체내에 흡수되면 배출이 어려워 축적이 되고 천식환자에게 심장질환을 유발하는 등 여러 부작용이 발생한다.”며 “알코올과 같은 새로운 약물전달 물질을 사용해 이러한 부작용으로부터 자유로워지길 기대한다”고 말했다.
□ 사진 설명
사진1. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 유동(Marangoni flows)
사진2. 아지랑이(Schlieren) 가시화 기법을 이용한 알콜 종류에 따른 혼합 유동 비교 (왼쪽 메타놀, 오른쪽 아이소프로필 알코올)
사진3. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 혼합 유동(Marangoni mixing flow)의 측면 가시화 결과
우리 몸속 세포들은 신경, 면역, 혈관 기능을 조절하기 위해 다양한 신호 분자(signaling molecules)를 주고받는다. 그중 일산화질소(NO)와 암모니아(NH₃)는 특히 중요한 역할을 하지만, 이들은 불안정하거나 기체 상태로 존재해 외부에서 생성하거나 조절하기가 매우 어려웠다. 우리 연구진이 전기 자극 하나만으로 세포 안팎에서 원하는 신호 물질을 생성하고, 이를 통해 세포 반응을 마치 전기 스위치처럼 켜고 끌 수 있는 플랫폼을 개발했다. 향후 전자약, 전기유전학, 맞춤형 세포 치료 등 미래형 의료 기술의 핵심 기반으로 활용될 수 있을 것으로 기대된다. 우리 대학 생명화학공학과 박지민 교수 연구팀이 생명화학공학과 김지한 교수팀과의 공동연구를 통해, 전기 신호만으로 일산화질소와 암모니아 신호 물질을 원하는 순간에 생성할 수 있고 세포의 반응 시점·범위·지속 시간까지 조절할 수 있는 고정밀 생체 제어 플랫폼인 ‘바이오전기합성(Bioel
2025-08-12기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10‘허포트리콘’은 뇌 속 염증을 억제하고 신경세포를 보호하는 작용이 뛰어난 물질로 치매나 파킨슨병과 같은 퇴행성 뇌 질환 치료제로 발전할 가능성이 크다고 평가받고 있다. 이 물질은 콩벌레와 공생하는 곰팡이에서만 극미량 얻을 수 있는데, 우리 연구진이 이 희귀 천연물을 화학 합성* 하는데 성공해, 차세대 신경퇴행성 질환 약물 개발의 가능성을 제시했다. *화학 합성: 화학 반응을 이용하여 원하는 물질을 만드는 과정 우리 대학 화학과 한순규 교수 연구팀이 콩벌레와 공생하는 곰팡이에서 발견된 천연 항신경염증 물질 ‘허포트리콘(herpotrichone) A,B,C’를 세계 최초로 합성하는 데 성공했다고 31일 밝혔다. 허포트리콘 천연물은 콩벌레의 공생균인 ‘허포트리시아(Herpotrichia) sp. SF09’에서만 극미량으로 얻을 수 있는 물질로, 다섯 개의 고리 구조(6각형 4개와 3각형 1개)인 6/6/6/6/
2025-07-31고유의 면역 시스템을 지닌 식물은 때때로 자신의 단백질 구조를 병원균으로 오인해 스스로를 공격하는 ‘자가면역 반응’을 일으키기도 한다. 특히 서로 다른 품종 간 교배 후, 후손 식물이 건강하게 자라지 못하고 스스로 고사하는‘잡종 괴사(hybrid necrosis)’현상은 오랫동안 식물학자와 농업 연구자들에게 해결이 어려운 난제로 여겨져 왔다. 이에 KAIST를 포함한 국내외 연구진은 식물 자가면역 반응의 유발 메커니즘을 규명하고, 이를 사전에 예측·회피할 수 있는 신개념 품종 개량 전략을 제시하는 데 성공했다. 우리 대학 송지준 교수 연구팀이 국립싱가포르대학(NUS), 옥스퍼드대학 연구팀과 공동연구를 통해, 초저온 전자현미경(Cryo-EM) 기술을 활용, 식물 자가면역 반응을 유발하는 단백질 복합체‘DM3’의 구조와 기능을 규명했다고 21일 밝혔다. 이번 연구는 식물 잡종 간 교배 시 면역 수용체
2025-07-21과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다. 우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다. 정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발
2025-07-17