-
활성산소에 대한 세포반응 원리 규명 - 암과 노화 극복의 실마리 제공
우리 학교 연구진이 활성산소* 농도에 따라 세포의 운명이 어떻게 달라지는지 그 원리를 규명해냈다. 활성산소는 세포의 성장을 돕는 한편 세포손상을 일으켜 노화 등을 촉진하는 것으로 알려져 있었다. 이처럼 세포를 죽게도 하고 살리기도 하는 활성산소의 상반된 역할을 설명할 수 있는 실마리가 찾아진 것이다. * 활성산소(ROS) : 인체 대사활동에 의해 발생되는 산소 부산물로 세포의 성장과 분화를 돕고 염증을 억제하는 유익한 기능을 하는 한편 세포손상을 유발하여 암, 당뇨 등 여러 질병을 일으키고, 노화를 촉진시키는 것으로 알려져 있다.
우리 대학 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 이호성 박사과정 연구원(제1저자), 황채영 박사(공동 제1저자), 신성영 박사가 참여하였으며, 한국생명공학연구원 권기선 박사(교신저자)가 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)과 바이오·의료기술개발사업의 지원으로 수행되었고 연구결과는 사이언스(Science) 자매지인 사이언스 시그널링(Science Signaling)지 6월 3일자에 게재되었다. * 논문명 : MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species
연구팀은 활성산소의 농도에 따라 세포의 증식 또는 세포의 사멸이라는 운명을 가르는 분자스위치가 MLK3* 중심의 피드백회로임을 알아냈다. * MLK3 : 루신-지퍼 구조의 인산화효소로 세포 사멸에 관여하는 단백질이다.
적절한 스트레스가 주어지는 환경에서는 세포가 분열하도록 신호를 보내는 반면 과도한 스트레스 상황에서는 오히려 세포분열을 멈추고 세포가 죽도록 유도하는 결정적 단백질회로가 밝혀짐에 따라 향후 활성산소와 관련된 인체질환 연구의 실마리가 될 것으로 기대된다.
연구팀은 활성산소 농도가 낮을 때는 세포증식에 관여하는 ERK* 단백질이 활성화되는 반면 활성산소 농도가 높아지면 세포사멸에 관여하는 JNK** 단백질이 활성화 되는 것을 알아냈다.
* ERK(Extracellular signal-regulated kinases) : 세포의 생존 및 증식에 관여하는 대표적인 신호전달 분자 ** JNK(c-Jun N-terminal kinases) : 세포의 스트레스 반응 및 사멸에 관여하는 대표적인 신호전달 분자
나아가 수학모델링과 컴퓨터시뮬레이션 분석, 그리고 분자세포생물학 실험을 융합한 시스템생물학 연구를 통해 MLK3 중심의 피드백회로가 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 핵심적인 분자스위치임을 밝혀내었다.
조 교수는 “IT와 BT의 융합연구인 시스템생물학 연구를 통해 수수께끼로 남아있던 활성산소에 대한 상반된 세포반응의 원리를 규명한 것으로 향후 활성산소로 인한 노화나 암을 극복하기 위한 연구에 활용될 것으로 기대된다”고 밝혔다.
연구 개요도. (A, B) 낮은 농도의 활성산소에 대해서는 세포 증식에 관여하는 단백질인 ERK가 높은 활성도를 보이는 반면, 높은 농도의 활성산소에 대해서는 세포 사멸에 관여하는 단백질인 JNK가 높은 활성도를 보인다는 것을 실험을 통해 확인하였다. 이 실험 결과는 ERK와 JNK가 활성산소의 농도에 따른 상반된 세포 반응을 유발할 수 있음을 시사한다. (C) 대규모 컴퓨터 시뮬레이션 분석을 통해 MLK3을 매개하는 양성피드백 회로와 MKPs를 통한 ERK와 JNK 간 상호소통이 활성산소의 농도에 따른 ERK와 JNK의 상반된 활성화를 일으키는 핵심회로임을 밝혀내었다. (D) MLK3을 매개하는 양성피드백회로는 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 분자스위치 역할을 한다.
2014.06.09
조회수 19308
-
대장조직의 숨겨진 암발생 억제 메커니즘 규명
KAIST 연구진이 대장조직에 숨겨진 암발생 억제 메커니즘을 규명해냈다. 대장조직에 내재된 방어 메커니즘이 밝혀짐에 따라 대장암 발병에 대한 이해를 돕는 계기가 될 것으로 기대된다.
우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 송제훈 박사과정 연구원(제1저자)이 참여하였으며, 영국 암연구소 오웬 삼손 박사와 데이비드 휴웰, 레이첼 리지웨이, 아일랜드 연구소 보리스 콜로덴코, 월터 콜치 박사가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었고 연구결과는 셀(Cell) 자매지 셀 리포트(Cell Reports)지 온라인판 3월 28일자에 게재되었다.
* 논문명 : The APC network regulates the removal of mutated cells from colonic crypts
생명체는 손상된 조직을 스스로 복구할 수 있지만 복구를 위한 세포분열 과정에서 암을 일으킬 수 있는 유전자 변이가 생길 수 있다. 이는 빠른 세포분열 속도와 소화과정에서의 독성물질 때문에 유전자 변이 확률이 높은 대장의 장샘*에서 특히 문제가 된다.
* 장샘(crypt) : 대장 표면을 형성하는 약 2000여개의 세포로 구성된 동굴모양의 상피 연구팀은 유전자 변이로 발암 가능성이 높아진 세포를 대장의 장샘에서 빨리 내보내는 방식으로 대장조직이 빠르고 빈번한 조직재생과정에서 암 발생을 억제한다는 것을 알아냈다. 변이된 세포의 장샘 체류시간을 줄여 비정상적 세포분열을 억제하는 방어 메커니즘이 대장에 내재되어 있다는 것이다.
수학모델을 만들고 이에 대한 방대한 컴퓨터 시뮬레이션 분석을 수행한 결과 유전자 변이에 의해 윈트신호전달*이 강화된 변이세포는 정상세포에 비해 접착력이 높아지면서 장샘의 위쪽으로 더욱 빠르게 이동, 장샘을 벗어나 장내로 배출되기 쉬운 것으로 나타났다.
* 윈트 신호전달(Wnt Signaling) : 세포의 증식과 분화에 관여하는 신호전달 경로로 배아발달이나 성체조직의 항상성 관리에 특히 중요하다. 세포 외부에서 윈트 신호가 들어오면 베타 카테닌을 분해시켜 농도를 낮게 유지해 주는 분해복합체가 억제되면서 세포증식을 돕는 표적 유전자들이 발현되어 세포증식이 일어나게 된다.
유전자 변이로 윈트 신호전달회로의 핵심인자인 베타 카테닌이 분해되지 못하면 축적된 베타 카테닌이 세포증식을 활성화시키는 한편세포 접착력을 높이게 되는데, 장샘 조직의 특수한 환경과 비슷한 접착력을 가진 세포들이 모이려는 성질로 인해 결국 변이된 세포를 배출시켜 조직의 항상성을 유지한다는 것이다.
실제 생쥐모델에서도 비정상적인 장샘 조직의 경우 증식이 활발한 세포가 오히려 느리게 이동하는 것으로 나타나 이같은 시뮬레이션 결과를 확인할 수 있었다.
조 교수는 “본 연구는 컴퓨터 시뮬레이션으로 다세포 생명체가 비정상적 세포 변이에도 불구하고 조직의 항상성을 유지하도록 정교하게 설계되어 있음을 규명한 것으로 IT와 BT의 융합연구인 시스템생물학 연구를 통해 복잡한 생명현상의 숨겨진 원리를 파악할 수 있음을 보인 것” 이라고 밝혔다.
이 연구를 통해 대장의 장샘조직이 조직 내 암의 진화를 애초에 억제할 수 있는 메커니즘을 내재하고 있다는 놀라운 사실을 밝힘으로써 대장암 발생에 대한 이해를 한 단계 높이게 되었다. 또한 이번 연구결과는 대장암을 치료하기 위한 신약개발의 개발 방향에 대한 새로운 통찰을 제시하였다
주요그림 1 설명.
연구개요 모식도: 세포의 자가복구는 다세포생명체가 손상된 조직을 재생하기 위한 필수적인 과정이지만동시에 암을 일으킬 수 있는 체세포 변이의 위험성을 수반한다. 그렇다면 어떻게 이런 딜레마가 생체조직 내에서 해결될 수 있는 것인가?
이 문제는 재생속도가 빠르고 다양한 변이인자에 노출이 많은 대장조직에서 특히 중요하다. 연구팀은 대장 장샘의 세포증식과 이동에 관한 수학모델의 대규모 컴퓨터시뮬레이션과 생물학 시험을 결합한 시스템생물학(Systems Biology) 연구를 통해 그 분자적 메커니즘을 최초로 규명하였다. 장샘 조직 상단으로 이동하는 단일세포의 동역학 특성을 분석함으로써 암의 발생을 방지하는 장샘의 숨겨진 메커니즘을 밝힌 것이다. 그림은 실험용 생쥐에서 추출한 대장조직의 현미경 사진 위에 규명한 메커니즘을 그림으로 도식화 한 것이다.
주요그림 2 설명. 컴퓨터시뮬레이션 결과와 동물모델 실험을 통한 검증: (A) 야생형 장샘(첫째 행) 및 에이피시 유전자 변이된 장샘(둘째 행), 베타카테닌 유전자 변이된 장샘(셋째 행)에서, 이질적 세포군집에 의한 세포 재배치의 효과를 조사하는 컴퓨터 시뮬레이션이 수행되었다. 여기서 이질성은 균등하게 취해진 100개의 표본세포(첫째와 둘째 열)에 대해서 가해진 랜덤 노이즈를 노이즈가 없는 기준 분자 프로파일(파랑 파선)에 추가함으로써 모사된다. 표본세포들의 초기위치들은 세포 재배치에 의해서 최종위치로 변경된다. 이러한 세포재배치가 가져오는 윈트신호전달 및 세포접착의 분포(셋째와 네째 열)가 변화되는 양상이 조사되었다. 빨강 점 및 초록 점들은 기준 분자 프로파일에 대한 양과 음의 편차를 각각 가리키고, 빨강 및 초록 화살표들은 빨강과 초록 점들의 이동 방향을 각각 가리킨다. (B,C) 동형 에이피시 유전자 변이와 동형 및 이형 베타카테닌 변이들을 가지도록 유전자 조작된 생체모델(실험용 마우스)을 사용하였다(B,C). APCfl/fl(동형) 및 β-cateninexon3/+(이형), β-cateninexon3/exon3(동형) 유전자변이 실험용 마우스 (B, 첫째 행)의 대장 조직에 대해서, BrDU주입 후 2시간 이후에 BrDU 양성으로 마크된 세포들은 장샘의 증식영역(주로 아랫부분)에 한정된다. BrDU 주입 후 48시간 이후 장샘의 BrDU양성 세포들은 장샘의 윗쪽 방향으로 이동하였음을 가리킨다(B, 둘째 열). 에이피시 유전자 변이의 경우에는 동형 변이를 가진 생체모델이 사용되었다 (C, 둘째 열). 베타카테닌 변이의 경우에는 이형 변이(C, 셋째 열) 및 동형 변이(C, 넷째 열)를 가진 생체모델이 사용되었다. 본 연구팀은 BrDU 주입 후 2시간 및 48시간 후 BrDU가 마크된 세포들을 관측하였다. BrDU가 주입 후 2시간 이전에 DNA내에 포함되어지기 때문에 2시간에서의 BrDU마크는 증식영역의 위치를 가리킨다. BrDU 주입 후 48시간에서 장샘 내 세포의 이동과 증식이 관찰되었다. 본 연구팀은 증식성 세포들의 위치와 개수를 정량화하였고(C, 좌측) BrDU 표식 된 세포군집의 이동을 측정하기 위하여 누적빈도를 계산하였다(C, 우측). (C)의 화살표는 BrDU 표식된 세포군집의 이동거리를 가리킨다. 표본 마우스마다 50개의 ½장샘이 기록되었는데, 여기서 유전자 형마다 적어도 3개의 다른 실험용 마우스가 사용되었다.
2014.04.02
조회수 20590
-
손상된 DNA의 돌연변이 수리과정 규명
- DNA 손상을 복구하는 암 관련 핵심 효소 ATM의 조절 메커니즘 밝혀 -
우리 학교 생명과학과 최광욱 교수와 홍성태 박사 연구팀은 생체정보를 저장하는 DNA가 손상됐을 때 이를 수리하는 핵심효소의 기능에 필수적인 단백질 ‘ATM(Ataxia telangiectasia mutated)’의 작동 메커니즘을 규명했다.
연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature communications)’ 19일자 온라인판에 게재됐다.
인간을 포함해 DNA를 갖고 있는 모든 생명체는 자신의 DNA정보를 지키기 위해 끊임없이 노력하고 있으며 이들이 살아가고 있는 자연환경에는 DNA를 손상시킬 수 있는 수많은 요소들이 존재한다.
예를 들면, 우리가 매일 섭취하는 음식물속에 들어있는 탄화물질이나 건물의 시멘트에서 나오는 라돈과 같은 방사선 물질, 강한 태양빛에 포함된 자외선 등 수많은 발암물질들과 함께 살아가고 있다.
생명체는 발암물질들로부터 DNA정보를 일정하게 유지하기 위해 복잡하고 정교한 DNA 수리작업을 항상 수행하고 있는데 이 과정에서 ‘ATM’이라고 하는 DNA 손상복구 단백질이 핵심적인 역할을 한다. 따라서 ATM이 제대로 작동하지 않으면 암 발병 확률이 높아진다.
지금까지 학계에서는 TCTP(Translationally controlled tumor protein)라는 단백질이 ATM의 기능을 조절하는데 중요할 것이라고 추정해 왔다. 그러나 이에 대한 주된 연구결과가 배양된 세포수준에서 확인했기 때문에 정확히 어떠한 방식으로 TCTP가 ATM의 기능을 조절하는지 알 수 없었다.
연구팀은 TCTP에 결합하는 아미노산 조각의 정보를 활용해 TCTP가 ATM과 결합을 할 수 있고, 다양한 분자생화학적인 방법들을 이용해 TCTP가 ATM의 효소기능을 높여준다는 사실을 밝혀냈다.
이와 함께 분자 유전학의 모델동물로 널리 사용되는 초파리를 이용해 TCTP와 ATM이 방사선에 의해 손상된 DNA를 수리하는데 매우 중요한 역할을 하고 있다는 점도 규명했다.
이를 통해 연구팀은 TCTP가 세포배양 수준은 물론 고등생명체에서도 DNA 정보를 일정하게 유지하는데 중요한 역할을 하며, TCTP가 ATM의 기능을 조절하는 방법에 대한 중요하고 구체적인 단초를 제시했다.
최광욱 교수는 이번 연구에 대해 “초파리 모델동물을 이용한 기초연구가 암 등 질병의 과정을 이해하고 치료방법을 개발하는데 중요한 기여를 할 수 있음을 보여주는 좋은 사례”라고 말했다.
이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단이 추진하는 중견연구자지원사업(도약 연구)과 일반연구자지원(대통령포스닥펠로우십)의 지원을 받아 수행됐다.
□ 보충자료
1. ATM(Ataxia telangiectasia mutated)ATM 유전자의 이상은 Louis-Bar syndrome 이라는 희귀 퇴행성 신경질환을 유발하는 것으로 알려져 있다. 운동기능이상, 눈의 흰자위나 피부에 비정상적으로 나타나는 혈관 확장, 약화된 면역반응, 혈액암 (림프종, 백혈병) 과 같은 질병증상을 추가로 일으킬 수 있다. ATM 유전자는 인산화 효소(kinase)의 기능을 가지고 있으며, ATM 단백질은 DNA의 이중나선이 모두 끊어질 경우, 이를 연결하는데 중요한 역할을 수행한다.
2. TCTP(Translationally controlled tumor protein)1988년 처음으로 발견된 단백질로, 이 유전자의 이름은 종양 세포에서 그 양이 비정상적으로 많아지기 때문에 붙여졌다. 그 기능이 본격적으로 밝혀진 것은 2000 초반부터이며, 세포의 생존과 성장에 중요한 역할을 한다. 최근에서야 DNA 정보를 유지하는데 중요하다는 것이 밝혀졌다.
3. Nature communcations네이처를 출간하는 Nature Publishing Group (NPG)에서 발간하는 온라인 전용 과학저널. 생물학, 물리학, 화학, 공학, 천문학, 고고학 등 다양한 분야의 수준 높은 과학연구 주제를 다루고 있다. 2012년을 기준으로 하는 SCI (Science citation index, 과학분야 인용지수)는 10.015 이다.
4. 초파리1900년대 초반, Charles W. Woodworth, William E. Castle, Thomas H. Morgan등이 멘델유전학을 연구하기 위해 처음으로 사용하기 시작한 모델 동물. 진핵세포에서 일어나는 생명현상을 연구하기 위해 오랫동안 사용되어온 대표적인 모델 동물이다.
□ 그림설명
그림1. TCTP단백질의 양이 줄어들면 방사능에 의해 쉽게 초파리 눈 세포의 형태가 비정상적으로 변형된다. (화살촉). Scale bars = 200mm
그림2. TCTP 단백질의 양이 줄어들면, 방사능에 의해 초파리의 염색체가 쉽게 끊어진다 (화살촉 표시). Scale bars = 10 mm.
그림3. TCTP와 ATM의 유전자발현이 줄어들면 눈의 정상적인 발생에 큰 결함이 생긴다.(왼쪽 : 초파리의 정상적인 눈, 오른쪽 : 성장이 결핍된 눈)
그림4. ATM은 끊어진 DNA의 위치를 표시하며, TCTP는 이 작용이 원활히 일어나도록 돕는다. 세포 핵 안에 들어있는 DNA(파란 선)는 히스톤 단백질(녹색 원통)에 감겨있다. DNA가 끊어지면(붉은 번개표시) 끊어진 자리에 ATM 단백질이 인산기(P)를 부착한다. 다양한 DNA 수리 단백질들은 이 인산기를 DNA에 수리가 필요하다는 신호로 인식하고 모여든다.
2013.12.20
조회수 22041
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 25395
-
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” -
우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다.
연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다.
산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다.
하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다.
손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다.
인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다.
이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다.
지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다.
연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다.
이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다.
암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다.
최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다.
이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다.
그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조
그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상
그림3. 논문표지
2013.06.03
조회수 18561
-
금 나노선 세포 주사기 개발
- 유전자를 세포 핵 안으로 직접, 원하는 순간에, 원하는 양만큼만 정교하게 전달-
우리 학교 연구팀이 금 나노선을 이용해 유전자를 살아있는 세포의 핵에 직접 전달할 수 있는 나노 주사기를 개발했다.
우리 학교 화학과 김봉수 교수와 생명화학공학과 이상엽 특훈교수 공동 연구팀이 단결정 금 나노선에 유전자를 부착해 세포의 핵에 정교하게 찌른 후 전기 신호로 유전자를 전달하고 유전형질을 발현시키는데 성공했다.
연구결과는 나노 분야 세계적 권위지인 ‘나노 레터스(Nano Letters)’ 5월 2일자 온라인 판에 게재됐다.
인체는 약 100조 개의 세포로 이뤄진 대단히 복잡한 시스템이다. 각각의 세포는 주변 세포와 유기적으로 신호를 교환함으로써 인간의 고차원 생명활동을 수행한다. 생명현상을 이해하기 위한 첫 단계는 하나의 세포에서 일어나는 현상 및 세포 간의 신호 전달을 정확하게 밝혀내는 것이며, 이는 생물학, 바이오 연료전지, 신약 개발 분야 등에서 매우 중요하다.
단일 세포에 생활성(bioactive) 분자를 선택적으로 전달하는 기술은 세포 내 생체현상을 세밀히 규명하고 질병 치료법을 개발하는데 필수적이다. 세포에 주사기를 꽂고 물질을 전달할 때 세포를 다치지 않게 하는 것이 무엇보다도 중요한데 이를 위해 다양한 나노소재를 이용한 전달 방법이 연구되고 있다.
연구팀은 직경이 100나노미터 정도로 매우 가는 금 나노선에 DNA를 붙이고 이를 정확하게 세포핵에 찌른 후 외부에서 전기 신호를 보내 원하는 만큼의 유전자를 정확히 전달하는 나노주사기를 개발했다.
금 나노선 주사기로 DNA를 세포 핵 안으로 제대로 전달하면 세포는 DNA로부터 정보를 받아 단백질을 만들어낸다. 연구팀은 녹색 형광을 내는 단백질을 만드는 DNA를 세포 핵 안으로 전달한 뒤 세포에서 녹색 형광이 나오는 것을 관찰함으로써 DNA가 성공적으로 전달된 것을 확인했다.
금 나노선 나노주사기는 지금까지 보고된 DNA 전달 주사기 중 가장 가늘어서 세포에 상처를 전혀 주지 않고도 핵 안에 정교하게 삽입할 수 있다. 이 주사기를 이용하면 DNA를 세포의 핵 안으로 직접 정확히 전달함으로써 전달 효율을 크게 높일 수 있고 매우 정교한 유전물질 조절이 가능하다.
김봉수 교수는 이번에 개발한 금 나노선 주사기에 대해 “이 주사기는 세포 내부의 원하는 위치에, 원하는 시간에, 원하는 양만큼 유전 물질이나 단백질 등을 정교하게 전달해 원하는 대로 유전현상 및 세포현상을 조절 및 연구하는데 대단히 유용하다”며 “특히, 유전자 치료요법, 표적형 약물 전달 개발, 세포 내 신호전달의 연구에서 선도적 역할을 할 수 있을 것”이라고 말했다.
한편, KAIST 화학과 김봉수 교수와 이상엽 교수가 공동으로 주도한 이번 연구는 강미정 박사과정 학생과 유승민 박사가 참여했다.
2013.05.15
조회수 13336
-
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 -
우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다.
스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다.
뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다.
지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다.
연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다.
이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다.
이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다.
윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다.
한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다.
(a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다.
(b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 17900
-
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” -
우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템
화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다.
우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다.
우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다.
특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다.
연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다.
* 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질
이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“
이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 18205
-
시스템생물학 연구로 표적항암제 내성 원리 규명
- 분자세포생물학지 발표, “표적항암제 내성 극복 및 암 생존률 향상 위한 단초 마련”-
최근 항암치료법으로 주목 받고 있는 표적항암제(멕 억제제, MEK inhibitor)의 근본적인 내성 원리가 국내 연구진에 의해 밝혀져, 향후 항암제 내성을 극복하고 암 생존률을 높일 수 있는 토대를 마련하였다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템생물학 연구로 이루어졌다는 점에서 큰 의미가 있다.
우리 학교 조광현 교수가 주도하고 원재경 박사과정생, 신성영 박사, 이종훈 박사과정생, 허원도 교수 및 양희원 박사가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업 및 WCU(세계수준의 연구중심대학) 육성사업의 지원으로 수행되었다.
연구결과는 분자세포생물학 분야의 권위 있는 학술지인 ‘분자세포생물학지(Journal of Molecular Cell Biology, IF=13.4)’의 표지논문으로 선정되어 6월 1일자에 게재되었다. (논문명: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor)
표적항암제는 종양세포 속에 있는 특정 신호전달경로의 분자를 목표(target)로 하는데, 최근 폐암, 유방암 등 일부 종양에서 기존 항암제와 달리 부작용이 적고 임상효능이 높아 전 세계 과학자들로부터 큰 주목을 받고 있다. 특히 표적항암제는 개인 맞춤형 항암치료제로 개발될 수 있어 기대를 모으고 있다.
그러나 실제 임상 또는 전(前)임상 단계에서 많은 표적항암제의 내성이 관찰되어, 결국 신약개발로 이어지지 못하는 경우가 많다. 또한 효능은 있더라도 생존율이 낮거나 재발하는 경우가 빈번한 것으로 알려졌다.
대표적인 종양세포 신호전달경로인 어크(ERK) 신호전달경로는 대부분의 종양에서 활성화되는 경로인데, 특히 피부암이나 갑상선암은 이 경로에 있는 물질(비라프, BRAF)의 변이로 활성화되어서 암으로 발전하는 사례가 많다.
이 경우 어크 신호전달경로를 표적으로 하는 멕 억제제가 효과적인 치료법으로 알려져 있지만, 결국 내성이 발생하여 암이 다시 진행된다.
조광현 교수가 이끈 융합 연구팀은 어크 신호전달경로를 표적으로 하는 멕 억제제에 대한 내성과 그 근본원리를 수학모형과 대규모 컴퓨터 시뮬레이션을 이용해 분석하고, 그 결과를 분자생물학실험과 바이오이미징*기술을 통해 검증하였다. *) 바이오이미징 : 세포 또는 분자 수준에서 일어나는 현상을 영상으로 확인하는 기술
조 교수팀은 종양의 다양한 변이조건을 컴퓨터 시뮬레이션과 실험을 수행한 결과, 멕 억제제를 사용하면 어크 신호전달은 줄어들지만, 또 다른 신호전달경로(PI3K로의 우회 신호전달경로)가 활성화되어 멕 억제제의 효과가 반감됨을 입증하였다.
또한 이러한 반응이 신호전달 물질간의 복잡한 상호작용과 피드백으로 이루어진 네트워크 구조에서 비롯되었음을 밝히고, 그 원인이 되는 핵심 회로를 규명하여 이를 억제하는 다른 표적약물을 멕 억제제와 조합함으로써 표적항암제의 효과를 증진시킬 수 있음을 제시하였다.
조광현 교수는 “이번 연구는 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 규명한 첫 사례로, 약물이 세포의 신호전달경로에 미치는 영향을 컴퓨터 시뮬레이션으로 예측함으로써 표적항암제의 내성을 극복할 수 있음을 보여주었다. 또한 신호전달 네트워크에 대한 기초연구가 실제 임상의 약물 사용에 어떻게 적용될 수 있는지와 표적항암물질의 저항성에 대한 근본원리를 이해하고, 그 극복방안을 찾아내는 새로운 융합연구 플랫폼을 제시한 것으로 평가받고 있다”고 연구의의를 밝혔다.
2012.06.12
조회수 24191
-
고용량 분자 저장기술 개발 성공
- KAIST EEWS 대학원 Yaghi 교수팀, 고용량의 단백질 저장체 개발 성공해 사이언스(Science)지 5월호에 실려 -
- “선택적으로 반응하는 신약 개발에 도움될 것” -
다양한 종류의 단백질 물질을 고용량으로 저장할 수 있는 기술이 KAIST 연구진에 의해 개발됐다.
우리대학 EEWS대학원 오마르 야기(Omar M. Yaghi)교수 연구팀이 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보하는데 성공했다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 5월호(25일자)에 실렸다.
이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다.
이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 크게 도움이 될 것으로 예상된다.
금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1그램당 축구장과 같은 크기의 표면적을 가지고 있으며 고용량의 물질 저장 능력과 빠른 물질 이동특성을 가지고 있다.
따라서 많은 양의 물질을 내부에 저장할 수 있어 최근 다양한 종류의 차세대 저장체 연구에 필수적인 장비로 사용되고 있다.
그러나 지금까지의 금속유기골격구조체는 7.0Å(옴스트롬·100억분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었으며 고용량 가스 저장체로서의 가능성만 입증된 상태였다. 게다가 기존의 금속유기골격구조체의 경우 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했다.
야기(Yaghi) 교수 연구팀은 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발해 이러한 문제들을 해결하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰하기도 했다.
연구팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 내 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했다.
야기(Yaghi) 교수는 “이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술”이라며 “고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대된다”고 말했다.
2012.05.29
조회수 16332
-
부작용 없는 간경변 치료법 개발
- 환자 중 70% 증상 호전돼, 간이식 외 치료법이 없던 간경변 치료길 열려 -- KAIST 의과학대학원, 연세대학교 의과대학과 공동으로 기초와 임상을 연계한 중개연구의 쾌거 -
새로운 방식의 간경변 치료법이 개발됐다. 환자 중 70%가 증상이 호전되는 것을 발견했으며, 자신의 골수를 이용하기 때문에 간이식이 어려운 중증 간질환자들에게 시도해 볼 수 있는 치료가 가능해 질 것으로 기대된다.
우리 학교 의과학대학원 정원일 교수와 연세대학교 의과대학 김자경 교수 연구팀이 공동으로 자가골수세포를 이용해 부작용 없는 간경변 치료법을 개발했다.
간경변증은 간염바이러스 또는 알코올 등에 의한 간 손상시 간성상세포들이 비정상적으로 콜라겐을 분비해서 간이 딱딱해지는 것을 말한다.
이 질병은 전 세계적으로 높은 사망률을 보이는 질환으로써 치료약이 개발돼 있지 않다. 따라서 환자들은 간 이식을 통해 수명을 연장할 수 있으나 이식할 수 있는 간의 부족, 높은 수술비용, 그리고 면역억제제 부작용 등의 어려움이 있었다.
연구팀은 자가골수세포를 투여한 간경변 환자들이 24시간 이후부터 혈중 인터류킨-10이라는 생체물질이 증가하는 것을 관찰했다. 인터류킨-10은 간성상세포들의 콜라겐 분비를 억제하고, 염증을 억제하는 조절 T세포를 증가시켜 결과적으로 간기능을 호전시켰다.
임상연구결과 간경변 환자 15명 중 10명의 증상이 호전되는 것을 관찰해 간경변 환자들을 치료 할 수 있는 길이 열리는 근거를 제시했다.
자가골수세포를 이용한 간경변 치료는 면역부작용이 없고, 환자 자신의 몸에서 쉽게 얻어낼 수 있고, 현재 한 번의 시술만으로도 그 효과를 볼 수 있는 게 커다란 장점이다.
또한, 기존에 실시해오던 간이식과 같은 시술법보다 훨씬 더 저렴하기 때문에 환자들의 부담도 크게 감소될 것으로 전망된다.
이와 함께 효능이 없는 나머지 30%의 환자들은 빠른 시간 내에 간이식과 같은 다른 치료법으로 유도할 수 있는 큰 장점을 가지고 있다.
정원일 교수는 “증가하는 지방간과 C형간염 환자 및 비정상적인 음주문화로 인한 간질환이 심각한 문제로 다가오고 있지만 간이식 외에 마땅한 치료법이 없다”며 “이번 연구결과를 기반으로 미래를 준비한다면 막대한 사회적 및 경제적 파급효과가 있을 것으로 예상 된다”고 말했다.
또 유욱준 KAIST 의과학대학원 책임교수는 “이번 연구는 기초와 임상연구를 접목한 대표적 중개연구로 ‘기초 의과학 연구를 통해 의과대학을 졸업한 의사학생들을 훌륭한 박사로 성장시킨다’는 학과의 설립취지와 맞물리는 성공적인 사례”라고 말했다.
한편, 2009년부터 보건복지부 중개연구 및 교육과학기술부 핵심공동연구 사업 등의 일환으로 지난 3년간 수행된 이번 연구는 간 치료 분야에서 권위 있는 학술지인 ‘헤파톨로지(Hepatology, IF=10.885)’ 온라인판에 4월 27일자로 게재됐다.
붙임 : 보충자료, 그림설명
□ 보충자료
【기초와 임상을 연계한 중개연구】이번 연구는 기초와 임상 연구를 접목한 대표적인 중개연구(translational research)로써 ‘기초 의과학 연구를 통해 의과대학을 졸업한 의사학생들을 훌륭한 M.D.-Ph.D.로 성장시킨다’는 카이스트 의과학대학원의 설립취지와 맞물리는 성공적인 사례이다.
본 연구의 제일 저자인 ▲ 서양권 학생(2009년 입학)은 연세대학교 의과대학을 졸업하고 세브란스 병원에서 전문의 수련을 받은 후 본 카이스트 의과학대학원의 박사과정으로 입학한 학생으로 3년간의 고된 연구과정을 모범적으로 수행하여 왔으며 카이스트 의과학대학원 ▲ 정원일 교수는 수의사이자 동물실험 전문가로서 임상적 결과와 동물실험의 결과를 접목해 비교 및 분석을 실시하였으며 본 연구를 주도하였다.
▲ 연세대학교 의과대학 김자경 교수팀은 환자의 자가골수세포 치료를 한국에서 유일하게 수행중인 팀으로써 지난 3년간 환자의 선별, 시술 및 임상적 자료를 수집하고 분석하는 실험을 실시하여 왔다.
따라서 본 연구결과는 이들의 연구가 삼위일체되어 수행된 성공적인 중개연구로써 이러한 결과들을 활용하여 앞으로 본격적인 임상시술 및 추가 연구가 수행될 것으로 예상된다.
【경제적 가치 및 파급효과】우리나라에서 간질환의 사회적 경제적 지출액은 연간 약 2조 6,000억원 정도이며, 요양급여 지출액은 년간 약 3,550억원, 그 수혜자들은 166만명에 다다른다. 여기에 반해 아직까지 마땅한 치료법이 없어 환자들 스스로가 민간치료법에 의존하거나 간이식을 받는 것이 대부분이다.
현재 국내에서는 B형간염 예방접종에 따라 앞으로 B형간염유래 간경변증은 점차 줄게 될 것이나, 증가하는 C형간염 및 비정상적인 음주문화로 인한 간질환은 향후 20-30년 이후에 가장 심각한 문제가 될 것이라 예상된다.
따라서 본 연구결과의 가시적인 성과들을 기반으로 하여 미래를 준비할 수 있다면 막대한 사회적 및 경제적 이익이 있을 것으로 예측된다.
□ 그림설명
그림 1. 혈관으로 주입된 골수세포(녹색)가 간 내로 이동하여 간성상세포(붉은색)를 억제하는 것이 관찰됨(간조직 사진)
그림 2. 세포배양 실험에서도 간성상세포와 골수세포를 공동배양 시 강력하게 밀착하여 작용하는 것을 관찰(좌측 골수세포 주입직후, 우측 12시간 경과후)
그림 3. 간성상세포와 결합한 골수세포들이 IL-10을 분비하고 (좌측) 이들 세포들의 모양을 관찰한 바 우측에서와 같이 CD11b와 Gr1을 발현하는 미성숙 골수세포임을 확인함
그림 4. 골수에 들어있는 여러 종류의 골수세포들 중 특정 세포마커(CD11b와 Gr1)를 발현하는 골수세포들이 간으로 이동을 하게 된 후, 인터류킨-10이라는 물질을 분비함으로써 간경변을 유발시키는 간성상세포를 직접적으로 억제하거나 수여자 몸속에 존재하는 조절 T 세포의 활성을 유도하여 간접적으로 간성상세포의 활성을 억제하여 간경변을 치료하는 기전임.
2012.05.23
조회수 17868
-
순수 국내기술로 단백질 신약 개발한다!
- KAIST 김학성 교수, 의약품 원료로 사용되는 인공항체 개발 성공 -
- PNAS(미국국립과학원회보)에 2월 10일 발표 -의약품 원료로 사용되는 인간유래 항체를 대체할 수 있는 인공항체가 국내연구진에 의해 개발됐다. 가격은 현재보다 1/100수준으로 저렴하면서 개발이 훨씬 쉬워 개발기간은 기존 10년에서 5년 이내로 크게 단축될 것으로 기대된다.
우리 학교 생명과학과 김학성 교수가 바이오 및 뇌공학과 김동섭 교수와 공동으로 항체가 아닌 단백질을 재설계해 대장균에서 대량생산할 수 있는 인공항체개발에 성공했다.
개발된 인공항체는 항원과의 결합력, 생산성, 면역원성, 구조설계성 등이 용이해 장점만 갖춘 이상적인 단백질로 평가받고 있으며, 현재 치료제의 원료나 진단, 분석용으로 사용중인 항체를 그대로 대체 가능하다. 따라서 세계시장 규모가 192조원에 이르는 단백질 의약품 분야에서 앞으로 순수 국내기술로 개발된 단백질 신약이 세계시장을 주도할 수 있을 것으로 전망된다.
의약품 원료로 병원에서 사용되고 있는 기존의 항체는 치료제뿐만 아니라, 분석, 진단용 등 생명공학 및 의학 분야에서 광범위하게 활용되고 있다. 그러나 동물세포 배양을 포함해 복잡한 생산 공정을 통해 제조되기 때문에 1mg에 100만원 정도로 가격이 매우 비싸다. 또 대부분의 항체는 이미 해외 선진국의 특허로 등록돼 있어 비싼 로열티를 지불해야 한다.
이 때문에 우리나라를 포함한 많은 국가에서 이미 특허가 만료된 항체 의약품을 복제하는 바이오시밀러를 개발하는데 집중하고 있고, 질병에 대한 단백질 신약개발 분야는 선진국에 한참 뒤처지는 실정이다.김 교수팀은 먹장어나 칠성장어와 같은 무악류에 존재하는 단백질은 항체는 아니지만 항체처럼 면역작용을 한다는 사실에 착안해 이 분야 연구를 시작했고 마침내 인공항체 개발에 성공했다.
인공항체는 대장균에서 대량생산이 가능해 현재보다 1/100 수준의 싼 가격으로 만들 수 있으며, 모듈구조로 되어 있어 목적에 따라 자유롭게 구조 설계가 가능해 5년 내에 단백질 신약으로 개발 가능한 게 큰 특징이다.
이와 함께 단백질 신약개발에서 중요한 항원과의 결합력을 쉽게 조절할 수 있어 치료 효과가 높고 부작용이 적으며, 열과 pH(수소이온농도)에 대한 안정성이 매우 높고, 면역반응을 유도할 수 있는 면역원은 무시할 만한 수준으로 낮아 단백질 신약으로의 개발 가능성이 매우 높다.
연구팀이 개발한 인공항체 기술은 세포 분석을 통해 폐혈증과 관절염 치료제로서의 후보군으로 효과를 입증했으며 곧 동물실험을 수행할 예정이다.
김학성 교수는 “기존 항체는 항원과 결합하는 면적이 제한적이어서 결합강도를 높이는 것과 구조 설계가 매우 어려운 단점이 있다”며 “장점만을 갖춘 이상적인 특성의 인공항체는 현재 의약품 원료로 사용되는 항체를 대체할 수 있는 순수 국내 기술로 만들어진 단백질 신약이 될 것”이라고 말했다.
아울러 “개발된 인공항체 단백질 골격과 단백질 설계 기술은 생명공학 및 의학 분야에서 치료, 진단, 분석용 등으로 광범위하게 활용될 것으로 기대 된다”고 덧붙였다.
한편, 이 연구결과는 세계적 학술지인 미국국립과학원회보(PNAS) 2월 10 일자에 발표됐으며, 교육과학기술부가 주관하는 미래 유망 파이오니어 사업의 지원을 받아 수행됐다.
<용어설명>○ 항원: 체내에 유입된 외부 물질로 이물질로 인식되어 항체를 생성하는 면역 반응을 유발함
○ 항체: 항원에 특이적으로 결합하여 이를 제거하거나 무력화시키는 면역 관련 단백질
○ 면역원성: 사람이나 동물의 체내에 접종되었을 때, 면역 반응을 유발할 수 있는 항원으로서의 특성
○ 바이오시밀러: 치료 효능이 있는 항체나 호르몬 등을 의미하는 특허가 만료된 단백질 의약품의 복제약품
○ 무악류: 고생대 전기의 초기 어류로서 위, 아래 양 턱이 발달하지 않은 척추동물로 칠성장어와 먹장어가 대표적임
○ 모듈구조: 특정 단백질에서 반복적으로 존재하는 최소 구조적 단위인 모듈에 의해 형성되는 전체 단백질의 구조형태
○ 대장균: 사람이나 동물의 대장에 많이 서식하는 장 내 세균으로, 생명 공학에서는 단백질의 대량 생산에 주로 이용됨
그림1. 사람 항체의 구조. 분자량(150Kda)이 커서 세포내로 침투할 수 없으며 서로 뭉쳐 치는 경향이 커서 쉽게 활성을 잃는다. 그리고 항원과 결합하는 면적이 제한적이어서 결합 강도를 높이는 것과 합리적 설계가 매우 어려운 단점이 있다.
그림2. 기존 항체 치료제의 한계를 근본적으로 극복할 수 있는 새로운 비항체 인공항체 단백질. 반복 모듈기반의 인공항체 단백질은 설계 및 구조 예측이 용이하고, 높은 안정성을 갖으며, 결합 면적 및 크기의 조절이 용이하다.
그림3. 연구팀이 개발한 인공항체가 질병유발 인자인 항원과 결합한 모습
그림4. 개발된 인공항체의 3차원 구조
2012.02.13
조회수 19019