< (왼쪽부터) 물리학과 박용근 교수, 김건 박사 >
첨단 바이오/의학 분야에서 살아있는 세포와 조직 뿐만 아니라 오가노이드의 3차원 영상을 측정하고 정밀하게 분석하는 기술에 대한 중요도가 커지고 있다. 홀로토모그래피기술은 세포와 조직의 내부를 고해상도로 관찰할 수 있게 하여 재생의료, 맞춤형 의료, 난임 치료 등 연구에서 잠재력이 높게 평가되고 있다. 한국연구진이 광학 전문가가 아닌 의생명과학 연구자들을 대상으로 홀로토모그래피 장점과 넓은 응용 가능성을 알리는 논문을 발표해서 화제다.
우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영), 한국기초과학지원연구원(KBSI, 원장 양성광)과 공동 집필하여 홀로토모그래피의 원리와 응용 현황, 한계점 및 향후 방향성을 망라한 논문을 국제학술지에 게재했다고 30일 밝혔다.
홀로토모그래피는 엑스레이(X-ray) CT와 물리적인 원리는 동일하나 X선을 이용해 사람 몸속을 보는 CT와는 달리, 빛을 이용하여 세포와 조직의 내부를 고해상도로 관찰할 수 있게 한다. 염색이나 표지(label)와 같은 화학적⋅유전적 처리 없이 세포와 조직의 3차원 영상을 세포 소기관 수준의 해상도로 관찰할 수 있게 해주어, 이전에는 불가능했던 바이오 연구와 산업의 다양한 측정과 분석 한계를 극복할 수 있다.
< 그림 1. X선 CT와 비교하여 묘사한 홀로토모그래피의 모식도. CT와 유사하게 표지되지 않은 검체 고유의 광학적 성질을 3차원으로 측정한다는 공통점 있다. 홀로토모그래피는 X선 대신 가시광 영역의 빛을 조사하며, 흡수보다는 투명한 검체의 굴절률 측정을 제공한다. CT는 조사광의 기계적 회전을 통해서만 3차원 정보를 얻는 반면, 홀로토모그래피는 가시광 영역의 파면 제어기술을 적용해 이를 대체할 수 있다. >
살아있는 세포와 조직 뿐만 아니라 장기를 모사하는 3차원 구조체인 오가노이드(organoids)는 신약 개발 과정에서 동물 실험을 대체하고, 환자 맞춤형 치료법을 빠르고 효과적으로 확인하며, 궁극적으로 장기를 대체하는 치료 목적으로 활발하게 연구 개발이 진행 중이다.
오가노이드와 줄기세포 콜로니와 같은 3차원 생체 시편을 염색이나 전처리 없이 세포 소기관 수준으로 관찰하는 것은 3차원 생물학과 재생의학 분야에서 기초 연구 혁신과 바이오산업 응용 측면에서 모두 중요한 의미를 지니고 있다.
< 그림 2. 홀로토모그래피를 이용한 세포 측정 결과의 예시. B형 간염 바이러스 유전자가 삽입된 간암 세포주 (Hep3B)를 홀로토모그래피를 이용해 시간에 따라 측정하였다. Mitotracker 표지와 대조해보면 염색되지 않은 영상에서도 미토콘드리아의 형태를 포착할 수 있으며, 굴절률의 고대비로 인해 세포막 경계, 핵, 지질 등도 색인할 수 있다. H2O2 처리로 인해 세포 경계의 변형, 공포의 형성, 미토콘드리아의 응축 등이 관찰되며, 정상 배양액을 제공해 다시 회복되는 현상 또한 관찰할 수 있다. >
연구팀이 집필한 이번 논문에서는 3차원 생물학, 재생의료, 암 연구 등 다양한 분야에 홀로토모그래피 기술을 적용한 사례와 미래 발전 가능성을 소개했다. 또한, 광원의 결맞음(coherency) 정도에 따른 홀로토모그래피 기술을 유형화하고, 각 기술의 원리, 한계점, 극복 방안을 자세히 설명했다. 특히, 인공지능과 홀로토모그래피를 결합해 세포와 오가노이드를 관찰할 수 있는 한계를 크게 확장할 수 있는 전략을 심도 있게 다뤘다.
홀로토모그래피 기술은 첨단 바이오산업을 견인할 수 있는 가능성으로 인해, 전 세계 주요 대학 연구진들과 기업들이 관심을 갖고 연구 기술 개발에 투자하고 있는 분야다. 박용근 교수 연구팀은 지난 10여 년간 다양한 핵심 원천 기술과 응용 연구를 수행하며, 홀로토모그래피 분야를 국제적으로 선도하고 있다.
< 그림 3. 홀로토모그래피를 이용한 살아있는 장 오가노이드의 영상 장벽을 구성하는 다양한 종류의 세포와 소기관을 관찰할 수 있다. >
우리 대학 자연과학연구소 김건 박사, 생명과학과 윤기준 교수팀, IBS 유전체 교정 연구단(구본경 단장), 한국기초과학지원연구원의 이성수 박사팀 등 연구진과 공동 집필한 이번 논문은 ‘Nature Reviews Methods Primers’에 7월 25일 자 게재됐다. (논문명: Holotomography)
한편, 이번 연구는 연구재단의 리더연구사업과 창의도전연구지원사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업, 보건복지부의 보건의료 R&D 사업의 지원을 받아 수행됐다.
파킨슨병(PD)은 알파시누클린(α-synuclein) 단백질이 뇌세포 내에서 비정상적으로 응집되어 신경세포를 손상시키는 퇴행성 신경질환이다. KAIST 연구진은 파킨슨병의 핵심 병리 중 하나인 신경염증 조절에 있어 RNA 편집(RNA editing)이 중요한 역할을 한다는 사실을 세계 최초로 밝혀냈다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 UCL 국립신경전문병원 연구소 및 프랜시스 크릭 연구소와의 공동 연구를 통해, 뇌를 보호하고자 염증 반응을 일으키는 교세포(astrocyte)에 대해 RNA 편집 효소인 에이다원(ADAR1)이 면역 반응을 조절하는 중요한 역할을 한다는 것을 밝혀내고 파킨슨병의 병리 진행에 핵심적인 역할을 한다는 사실을 입증했다. 최민이 교수 연구팀은 뇌 면역세포의 염증반응을 알아보고자 파킨슨 환자에게서 유래한 줄기세포를 이용해 뇌의 신경세포를 돕는 교세포와 신경세포로 구성된 세포 모델을 만들고, 파킨슨병의 원인이 된다고 알려진 알파
2025-04-28우리 대학 의과학대학원 박수형 교수가 제2회 SBS문화재단 그랜드 퀘스트 프라이즈를 수상했다. 박수형 교수는 신·변종 바이러스 감염에 대한 면역반응과 백신 치료제 개발을 연구하며 감염병, 암, 자가면역질환 등 면역질환에서 병리 기전과 치료 전략을 제시해왔다. 특히, 아직 출현하지 않은 신종 바이러스에 대한 선제적 대응이라는 새로운 패러다임을 제시해 주목받았다. 박 교수는 항체와 T세포 기반 면역 반응을 통합한 범용 백신 가능성을 탐색하여 기존 기술의 한계를 극복하고 신·변종 바이러스 대응 기술력을 입증했다고 평가를 받았다. SBS문화재단 그랜드 퀘스트 프라이즈는 과학기술 난제 해결하는 신진 과학자를 발굴하고 지원하기 위해 제정되었다. 올해는 총 21명의 후보 중 도전성, 사회적 파급력, 성장 가능성을 기준으로 서울대 화학생물공학부 서상우 교수와 함께 최종 2명이 선정되었다. 4월 24일 서울 상암동 SBS 프리즘 타워에서 시상식이 진
2025-04-25교모세포종(Glioblastoma)은 가장 공격적이고 예후가 나쁜 대표적 악성 뇌종양으로, 광범위한 뇌 절제술을 포함한 표준 치료 후에도 1년 이내 대부분 재발하며 생존률이 매우 낮은 치명적인 질환이다. KAIST 연구진이 교모세포종에 암세포로 발전하는 가능성을 가진 전암세포가 있다는 것을 최초로 밝혔다. 우리 대학 의과학대학원 이정호 교수 연구팀은 세계 최초로 교모세포종의 진화와 재발 및 치료 저항성의 근원이 되는 ‘전암세포(Precancerous cell)’를 규명했다. 이정호 교수 연구팀은 2018년 교모세포종이 뇌 깊은 곳에 있는 돌연변이 줄기세포로부터 시작된다는 것을 최초로 밝혀내며 ‘네이쳐(Nature)’지에 게재한 바 있다. 이번 연구에서는 암의 씨앗과 같은 ‘전암 세포’가 어디서 유래하는지, 즉, 돌연변이 기원 세포가 어떻게 분화되는지를 규명하였고 이 전암 세포가 종양 내 세부 유형의 암세포들을
2025-04-21우리 대학은 4월 과학의 달을 맞아 국내 최대 규모의 과학 축제인 ‘2025 대한민국 과학기술축제’에 참여한다. 이번 행사는 ‘과학기술의 엔진, 내면의 호기심을 깨우다’라는 슬로건 아래 4월 16일부터 20일까지 5일간 열릴 예정이다. 우리 대학은 대전컨벤션센터(DCC)에서 진행되는 연구 성과 전시관인 ‘호기심 연구소’와 엑스포과학공원 야외전시관에서 체험형 콘텐츠를 선보이는 ‘호기심 발전소’에 참가해, 최첨단 연구 성과와 창업기업의 혁신 기술을 현장에서 선보인다. DCC에 준비된 호기심 연구소 KAIST관에서는 미래의 기술을 만날 수 있다. ▶ 배터리 한 번으로 마라톤 완주, 지드래곤(권지용교수) 노래에 춤추던 사족 보행 로봇 ‘라이보’ 황보제민 기계공학과 교수팀의 라이보는 세계 최초로 배터리 1회 충전으로 마라톤을 완주한 사족 보행 로봇으로 경사로, 계단, 빙
2025-04-15우리 대학 생명과학과 강석조 교수 연구팀이 3차원 종양미세환경에서 성장한 암세포에서 유래한 케모카인(Chemokine) CXCL5가 암세포의 대사 리프로그래밍(reprogramming)을 조절하며 이를 통하여 지질 과산화물의 축적으로 인해 유도되는 세포 사멸인 페롭토시스(ferroptosis)에 대한 저항성을 획득한다고 7일 밝혔다. CXCL5는 수용체인 CXCR2와의 결합을 통해 세포의 이동(migration) 및 침습(invasion)을 촉진하는 역할을 하는 케모카인으로, 종양미세환경에서 면역세포들의 침윤에 관여함이 알려져왔다. CXCL5는 여러 암종에서 발현이 증가되어 있음이 보고되었으나 실제 3차원 종양미세환경 내 암세포에서 유래한 CXCL5의 역할에 대해서는 밝혀진 바가 없다. 강 교수 연구팀은 세포외기질의 침착과 대식세포의 침투가 특징적인 암 미세환경을 모사하는 3차원 배양 시스템을 구축해 세포 간, 세포와 세포외기질 간 상호작용 뿐 아니라 종양미세환경 내 암세
2025-03-07