< 기계공학과 공경철 교수 >
우리 대학 기계공학과 공경철 교수가 포함된 국제공동연구팀이 로봇의 성능을 최적화하는 과정에 사람을 포함시킴으로써, 인적 요소(Human factor)를 로봇의 제어 알고리즘에 충분히 반영하는 방법인 힐로(HILO, Human-in-the-loop optimization)에 대한 연구를 네이처 본지(IF 50.5)에 발표했다고 4일 밝혔다.
이 논문은 공경철 교수 이외에도 스탠퍼드 대학의 Steven H. Collins(스티븐 콜린스) 교수, 하버드 대학의 Patrick Slade(패트릭 슬래드) 교수 등이 참여했다. HILO 방법의 핵심 연구자들이 모여 이론에 대한 설명과 응용 분야, 발전 방향까지 총망라하였고, 견해(Perspective)를 발표했다.
이 연구를 통해 로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 개발되어야 한다고 밝히고 있다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가오게 할 것이라고 말한다.
로봇은 이제 우리 일상에서 쉽게 만날 수 있으며 인간과 로봇이 서로 복잡하게 상호작용하는 경우가 빈번하게 발생하고 있다. 공장에서 협동 로봇과 사람이 함께 물건을 들어 나르기도 하고, 반자율주행 자동차의 운전자는 제어알고리즘과 동시에 차량을 운전한다.
웨어러블 로봇의 경우에는 로봇과 사람이 함께 하나의 동작을 만들어내는 극단적인 경우이다. 이외에도 사람과 로봇이 어우러져 협동하는 경우는 흔하게 찾아볼 수 있다.
< 그림 1. HILO가 적용되는 로봇 시스템들 예시(출처 : Nature) >
이처럼 로봇이 사람과 복잡한 상호작용을 하게 되면, 로봇의 성능을 원하는 만큼 이끌어내기가 쉽지 않다. 사람마다 서로 다른 행동 특성이 로봇의 동역학적인 특성에 영향을 끼치기 때문이다. 이 경우, 로봇이 사람과 동떨어져 동작하는 것보다는 로봇의 정밀도나 안전성을 확보하는 것이 훨씬 까다로워진다. 우리가 흔히 보는 바리스타 로봇이 유리장 안에 갇혀 있는 이유이기도 하다.
이와 같은 문제를 해결하기 위하여 HILO(Human-in-the-loop optimization) 방법이 제안됐다. 로봇과 사람을 별개의 시스템으로 간주하는 것이 아니라, 하나의 통합된 시스템으로 간주하여 최적화를 진행하는 방식이다.
이를 통해 HILO 방법은 로봇과 사람이 상호작용하는 시스템을 제어함에 있어 ‘개인 맞춤형 자동 최적화’라는 혁신적인 방향성과 가능성을 제시했다.
< 그림 2. HILO가 로봇 시스템에 적용되어 최적화가 이루어지는 원리(출처 Nature) >
공경철 교수(KAIST 기계공학과, ㈜엔젤로보틱스 대표이사)는 “연구하고 있는 웨어러블 로봇의 경우에는 인적 요소가 매우 강하게 작용한다. 사람마다 적절한 보행 패턴이 다르고, 같은 장애물이라도 극복하는 방법이 모두 제각각이기 때문이다”라고 말했다. 또한 “㈜엔젤로보틱스에서는 HILO 방법을 이용해 하반신 마비 장애인이 착용한 웨어러블 로봇의 성능을 개인맞춤형으로 최적화했고 앞으로 웨어러블 로봇의 온라인 자동최적화 기능을 상용화할 계획을 갖고 있다”고 강조했다.
실제로 공 교수가 개발해 상용화된 웨어러블 로봇은 사람마다 특성을 다르게 최적화할 수 있도록 알고리즘이 설계되어 있고, 현재 데이터 클라우드를 이용하여 병원-가정-일상에 이르는 다양한 환경에서 자동으로 최적화를 진행할 수 있도록 연구를 진행하고 있다.
로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 튜닝되어야 한다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가올지 기대된다.
한편 HILO에 대한 논문은 2024년 9월 네이쳐 본지(Vol 633, p.779)에 발표됐다.
(논문명 : On human-in-the-loop optimization of human–robot interaction)
우리 대학 산업디자인과 박현준 교수 연구팀인 ‘무브랩(Move Lab)’이 차세대 웨어러블 로봇 디자인 ‘엔젤로보틱스 WSF1 비전 콘셉트(VISION Concept)’로 세계적 권위를 자랑하는 ‘2025 레드닷 디자인 어워드(Red dot Design Award)’에서 디자인 콘셉트-프로페셔널(Design Concept-Professional) 부문 ‘베스트 오브 더 베스트(Best of the Best)’를 수상했다고 8일 밝혔다. 독일의 ‘레드닷 디자인 어워드’는 세계에서 가장 잘 알려진 디자인 공모전 중 하나로, 독일 iF 디자인 어워드, 미국 IDEA와 함께 세계 3대 디자인 어워드로 꼽힌다. ‘베스트 오브 더 베스트(Best of the Best)’상은 해당 부문에서 최고의 디자인에 수여되는 상으로, 레드닷 어워드 전체 수상작 중에서도 극
2025-08-08접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다. 우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다. 이번 기술은 ‘필드 프로그래밍(field-programmability)&rs
2025-08-06이차전지 양극 소재는 높은 충전 속도, 에너지 밀도, 안정성 등 어려운 기준들을 전부 충족해야 하기 때문에 소재 개발을 위해서는 수많은 소재 후보군을 고려해 탐색을 진행해야만 한다. 국내 산학 협력 연구진이 AI 및 자동화 시스템을 활용해 연구자의 개입 없이 이차전지 양극 소재의 개발을 진행하는 자율 탐색 실험실*을 구축했다. 이를 통해 개발 과정 중 발생하는 연구자의 노동을 최소화하며 탐색 기간을 93% 단축했다. *자율 탐색 실험실: 자율적으로 실험을 설계, 수행, 분석하여 최적의 소재를 탐색하는 플랫폼 우리 대학 신소재공학과 서동화 교수 연구팀이 포스코홀딩스 미래기술연구원(원장 김기수) 에너지소재연구소 LIB소재연구센터 연구팀과 산학 협력 연구를 통해, AI 및 자동화 기술을 활용해 이차전지 양극 소재를 탐색하는 자율 탐색 실험실을 구축했다고 3일 밝혔다. 이차전지 양극 소재 개발은 필연적으로 시료의 무게를 칭량하고 이송하는 정량, 혼합, 소결* 및 분석 과정을 거
2025-08-05심박수, 혈중산소포화도, 땀 성분 분석 등 지속적인 건강 모니터링을 위한 의료용 웨어러블 기기의 소형화와 경량화는 여전히 큰 도전 과제다. 특히 광학 센서는 LED 구동과 무선 전송에 많은 전력을 소모해 무겁고 부피가 큰 배터리를 필요로 한다. 이런 한계를 극복하기 위해 우리 연구진은 주변 빛을 에너지원으로 활용하고, 전력 상황에 따라 최적화된 관리를 통해 24시간 연속 측정이 가능한 차세대 웨어러블 플랫폼을 개발했다. 우리 대학 전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대학교 박찬호 박사팀과 공동연구를 통해, 주변 빛을 활용해 배터리 전력 부담을 줄인 적응형 무선 웨어러블 플랫폼을 개발했다고 30일 밝혔다. 의료용 웨어러블 기기의 배터리 문제를 해결하기 위해, 권경하 교수 연구팀은 주변의 자연광을 에너지원으로 활용하는 혁신적인 플랫폼을 개발했다. 이 플랫폼은 세 가지 상호 보완적인 빛 에너지 기술을 통합한 것이 특징이다. 첫 번째 핵심 기술인 ‘광
2025-07-31기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다. 이번 연구는 세포 내 다양한 생
2025-07-23