-
상용화 가능한 그래핀 신소재 학술지 특집호 발간
〈 김 상 욱 교수, 이 경 은 연구원 〉
우리 대학 신소재공학과 김상욱 교수가 편집을 주도한 ‘파티클(Particle & Particle Systems Characterization)’지의 그래핀 산화물 액정 특집호가 9월 22일 온라인 발간됐다.
파티클 지는 독일 와일리(Wiley-VCH)사가 발간하고 입자의 합성 및 응용방법 등을 다루는 전문 SCI 국제 학술지이다.
그래핀 산화물(Graphene Oxide)은 흑연으로부터 값싸게 제조할 수 있는 신소재로 대량생산이 가능하기 때문에 그래핀 상용화에 가장 가까운 물질로 주목받고 있다.
특히 그래핀 산화물의 액정을 이용하면 이들의 배열방향을 나노수준으로 손쉽게 조절할 수 있어 고기능성 소재를 만드는 데 큰 역할을 할 것으로 예상되고 있다.
김상욱 교수 연구팀은 지난 2011년 최초로 그래핀 산화물이 액체 내에 분산됐을 때 고체와 같은 결정성을 보이는 액정성을 발견했다. 그리고 이를 인정받아 이번 특집호의 편집을 주도했다.
이번 특집호에는 관련 분야의 세계적 석학 20명이 참여해 ▲그래핀 산화물 액정의 특성 조절 및 분석 ▲고기능성 그래핀 산화물 액정 섬유 제작 ▲액정성을 이용한 삼차원 구조체 제작 ▲그래핀 산화물 액정 기반 촉매 등의 연구 성과를 담았다.
이 중 김상욱 교수 연구팀은 그래핀 산화물 액정 섬유의 촉매화 연구를 소개했다.
연구팀은 그래핀 액정섬유 위에 비정질의 황화몰리브데늄을 전기 증착(electrodeposition)해 섬유 형태의 촉매를 제작했다. 이 기술을 통해 그래핀 섬유의 건조과정에서 생기는 표면의 주름위에 촉매가 고르게 증착돼 2차원적 기판에 비해 훨씬 많은 촉매를 담을 수 있어 우수한 성능을 보였다.
김 교수는 “그래핀 산화물 액정의 연구적, 산업적 가치는 무궁무진하다”며 “4차산업혁명에 걸맞는 맞춤형 재료로서 그래핀계 신소재의 가치가 더욱 증가할 것이다”고 말했다.
한편 김 교수는 9월 25일 그리스에서 열린 유럽 최대의 그래핀 관련 학회 ‘그래핀 위크(Graphene week)’에 노벨상 수상자 등 저명 학자들과 함께 초청돼 관련 연구 결과를 발표했다.
2017.10.18
조회수 15698
-
김일두 교수, 7초 안에 수소가스 탐지 가능한 센서 개발
〈 김일두 교수, 구원태 학생, 페너 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 美 캘리포니아 대학 어바인 캠퍼스 화학과 페너(Reginald M. Penner) 교수와의 공동 연구를 통해 대기 중 1% 수준 농도의 수소가스를 상온에서 7초 이내에 검출할 수 있는 초고속 센서를 개발했다.
이 기술은 금속유기구조체(metal-organic framework)가 코팅된 팔라듐(Pd) 나노와이어 어레이(array) 기반의 초고속 수소가스 감지소재로 향후 수소 자동차 등 다양한 분야에서 활용 가능할 것으로 기대된다.
구원태 박사과정이 1저자로 참여한 이번 연구는 재료분야의 권위 학술지 ‘에이씨에스 나노(ACS Nano)’ 9월호 표지 논문에 선정됐다.
수소가스는 친환경 차세대 에너지원으로 주목받지만 작은 스파크(spark)에도 폭발을 일으킬 수 있는 위험한 가연성 물질이다. 수소가스의 폭발 하한계는 대기 중 4%로 무색, 무취의 수소가스를 빠르게 검출할 수 있는 센서의 중요성이 커지고 있다.
미국 에너지부는 2009년 국가 과제 공고에서 대기 중 1% 수소가스를 60초 이내에 감지할 수 있고 60초 이내에 회복하는 수준이 안전한 수소가스의 검출 기준이라고 제시했다.
1960년대 팔라듐과 수소가스 간 반응시 저항변화가 생기는 현상이 발견된 이후, 팔라듐 기반의 초고감도, 초고속 수소가스 센서 개발을 위한 노력이 계속됐다. 그러나 공기 중 산소를 포함한 방해 가스의 영향으로 상용화 수준의 성능을 갖추지 못했다.
김 교수 및 페너 교수 연구팀은 상온에서 수백 ppm(part per million, 백만분의 1) 수준의 극미량 수소가스를 정밀하고 신속하게 감지할 수 있는 초고감도 감지 소재를 개발했다.
연구팀은 기존 팔라듐 센서의 한계를 극복하기 위해 수소의 선택적 투과가 가능한 금속유기구조체를 팔라듐 나노와이어 어레이 위에 결합했다.
이 금속유기구조체는 각각 0.34 나노미터와 1.16 나노미터의 아주 작은 구멍들로 구성된 표면적이 매우 높은 다공성 물질이다.
수소는 상온에서 0.289 나노미터의 운동지름(kinetic diameter, 다른 분자와 충돌을 일으킬 수 있는 동역학적 지름)을 갖기 때문에 0.34 나노미터의 구멍보다 작아 금속유기구조체 내부를 쉽게 통과할 수 있다. 하지만 0.34 나노미터보다 큰 가스들은 금속유기구조체 내부를 투과하기 어렵다.
이 원리를 통해 수소가스만을 선택적으로 투과하는 데 성공했고, 더불어 팔라듐 나노와이어와 수소가스의 반응을 촉진시켜 초고속으로 수소가스를 감지할 수 있음을 확인했다.
김 교수는 “개발된 초고속 수소가스 센서는 친환경 에너지원인 수소가스의 누출로 인한 사고 예방에 큰 도움을 줄 것이다”며 “금속유기구조체 기반 분자 필터링 기술을 활용해 대기 중 수많은 유해 가스를 초고성능으로 정확히 감지할 수 있는 고속 센서 소재 개발이 가능해 졌다”고 말했다.
□ 그림 설명
그림1. 2017. ACS Nano, 커버 이미지
그림2. Pd 나노와이어 어레이 이미지 및 금속유기구조체가 코팅된 Pd 나노와이어의 주사전자현미경 이미지, 그리고 개발된 소재의 수소 가스 감지 특성
그림3. 수소가스 탐지 센서 모식도(ACS Nano에 게재된 논문의 대표 이미지)
2017.09.26
조회수 17306
-
김대수 교수, 파킨슨병 신경회로 원리 규명
김 대 수 교수 〉
우리 대학 생명과학과 김대수 교수 연구팀이 기저핵 신호물질이 타겟신경을 억제하는 것이 아니라 흥분시킴으로써 파킨슨병의 운동 이상을 유발한다는 사실을 규명했다.
현재 학계는 드롱(Delong) 박사 연구팀이 1980년대에 제시했던 운동신호 억제이론을 파킨슨병 치료연구에 활용하고 있다. 이 이론은 파킨슨병 환자의 뇌에서 분비되는 기저핵 억제성 신호물질이 뇌의 운동신경을 억제함으로써 운동기능을 방해한다고 설명한다. 그러나 이 학설은 파킨슨 환자의 복잡한 증상을 설명하는 데에 한계가 있었다.
연구팀은 기존 학설의 핵심 내용을 뒤흔들었다. 연구팀은 광유전학 기법으로 생쥐 뇌의 기저핵 신경을 빛으로 자극해서 파킨슨병 환자와 유사한 증상을 유발했다. 기저핵의 억제성 신호를 받은 시상핵 신경들이 일시적으로 억제신호에 순응하여 억제되는 듯 했으나 이후 반발성 흥분을 보이는 것을 확인했다.
연구팀은 또한 반발성 흥분을 억제했을 때 다양한 파킨슨 증상을 보이던 파킨슨병 생쥐가 완전히 회복되는 것을 확인했다. 기저핵의 작용에 의해 시상핵 신경이 억제되는 것이 아닌 흥분함으로써 운동질환을 유도한 것이다. 반발성 흥분을 약물이나 빛으로 억제함으로써 파킨슨병 증상을 제거할 수 있는 가능성이 열렸다.
김대수 교수는 “이번 연구를 통해 반발성 흥분을 조절함으로써 파킨슨병 증상을 억제할 수 있는 기작이 규명됐다”며 “향후 도파민 세포가 이미 사라져 회복이 어려운 파킨슨병 환자를 치료할 수 있는 차세대 치료법이 가능할 것”이라고 연구의 의의를 설명했다. 이 연구는 과학기술정보통신부․한국연구재단 기초연구사업(개인연구) 지원으로 수행됐으며, 신경과학 분야 국제학술지인 뉴런(Neuron) 8월 30자 논문으로 게재됐다.
□ 그림 설명
그림1. 기저핵 억제성 입력이 파킨슨 증상을 나타내는 모식도
그림2. 광유전학적 기법으로 파킨슨 증상회복 성공
2017.09.26
조회수 16046
-
전상용 교수, 인체 담석형성반응 이용한 항암치료 시스템 개발
〈 전상용 교수, 이동윤 박사과정 〉
우리 대학 생명과학과 전상용 교수 연구팀이 인간 체내의 물질을 이용해 광학영상 진단 및 광열 치료가 가능한 항암시스템을 개발했다.
연구팀은 빌리루빈이라는 체내 물질과 그 빌리루빈으로 인해 발생하는 담석형성반응을 응용했다. 인체 내 강력한 항산화제인 빌리루빈의 담석 형성 과정에서 관찰되는 자체 금속 결합 기능과 신생아 황달 치료에 쓰이는 푸른빛에 반응하는 성질을 동시에 이용했다.
이를 통해 높은 생체 적합성과 우수한 광음향 진단 기능 및 광열 치료 효능을 보여 항암 치료 분야에서 적합한 치료 시스템이 될 것으로 기대된다.
이동윤 박사과정이 1저자로 참여한 이번 연구는 응용화학분야 저명학술지 앙케반테 케미(Angewandte Chemie International Edition) 9월 4일자 온라인 판에 게재됐다.
전 교수 연구팀은 과거 연구에서 물과 화합하지 않는 소수성을 갖는 빌리루빈과, 그 반대로 초 친수성 고분자인 폴리에틸렌글리콜(PEG)을 결합한 ‘페길화된 빌리루빈’ 기반의 나노입자 시스템을 개발한 경험이 있다.
이는 빌리루빈의 항산화 기능을 그대로 유지하면서 체내로 축적되지 않게 해 빌리루빈의 장점만을 취하는 기술이다. 이를 바탕으로 염증성 장 질환, 허혈/재관류, 췌도세포 이식, 천식 등의 동물 질병 모델에서 효능 및 안정성을 확인했다.
이번 연구에서는 앞선 연구의 접근 방식과 다르게 빌리루빈이 갖고 있는 다른 물리 화학적 성질을 이용해 항암 치료에 적용했다.
먼저 황달의 주요 원인체인 노란색 빌리루빈에 특정 파장대의 빛(푸른 빛)을 쬐어주면 이에 반응해 광이성질체(빛에 의해 모양이 변형된 물체)가 되고 배설이 활성화돼 신생아 황달 치료에 널리 쓰일 수 있는 광학물질인 점을 첫 번째 근거로 활용했다.
두 번째로는 인체 내의 쓸개관 혹은 쓸개 등에서 병이 생길 때 종종 발견할 수 있는 검은 색소 담석의 주성분 또한 빌리루빈이라는 점에 주목했다. 빌리루빈이 칼슘이나 구리 등 양이온과 중간 매개체 없이도 결합할 때 검은 색소 담석이 형성되는 점을 응용했다.
연구팀은 구리나 칼슘 대신 시스플라틴이라는 백금 금속 기반 항암제와 빌리루빈을 결합해 노란색의 빌리루빈을 보라색의 복합체로 변환시켰다.
이후 근적외선 파장대의 빛을 쬐었을 때 기존에 비해 크게 향상된 광감응성을 보였고, 실제 정맥 주사된 대장암 동물 모델에서도 종양 부분에서의 유의미한 광음향 신호 증가를 확인했다. 이 기술로 향후 더 향상된 종양 진단을 할 수 있을 것으로 기대된다.
또한 종양 부위에 근적외선 빛을 쬐었을 때 광열 효과에 의해 5분 내에 25℃ 이상의 온도 상승을 확인했고, 2주 후 다른 그룹에 비해 종양 크기의 감소 및 괴사를 확인했다.
전 교수는 “현재 개발된 물질들은 생체 적합성이 낮고 잠재적 생체 독성 가능성이 있는 인공소재 위주이기 때문에 임상으로 이어지는 데 한계가 있었다”며 “이번에 개발한 인체 유래 빌리루빈 기반의 광학물질은 광음향 영상 및 광열 치료의 전임상 중개연구 및 임상 적용에 새로운 플랫폼이 될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 빌리루빈의 담석형성반응 및 광감응성을 이용한 본 연구의 모식도
그림2. 빌리루빈 나노입자 (왼쪽)와 시스플라틴이 결합된 빌리루빈 나노입자 (오른쪽) 수용액
2017.09.20
조회수 22120
-
조광현 교수, 간암 표적 치료제 내성 극복 위한 최적 약물조합 발견
〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다.
서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다.
우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다.
간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다.
간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다.
진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다.
소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다.
소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다.
조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다.
이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다.
공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다.
□ 사진 설명
사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인
사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과
사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
2017.08.24
조회수 23404
-
최경철 교수, 초고유연성 의류형 디스플레이 개발
〈 최 승 엽 박사과정 〉
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물과 유기발광다이오드(OLED)를 융합해 높은 유연성을 갖는 최고 효율의 의류형 디스플레이 기술을 개발했다.
최승엽 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’ 7월 21자 온라인 판에 게재됐다.
디스플레이는 차세대 스마트 제품 외형의 대부분을 차지할 정도로 그 중요성이 커지고 있다. 더불어 사물인터넷과 웨어러블 기술의 비중이 늘어나면서 의류 형태의 웨어러블 디스플레이 기술도 주목받고 있다.
2011년 직물 위에 발광체를 형성한 연구 이후 실제 옷감 위에 디스플레이를 구현하기 위한 노력이 계속됐다. 하지만 직물 특유의 거친 표면과 유연한 특성 때문에 상용화 수준의 성능을 보여주지 못했다.
최 교수 연구팀은 의류 형태의 웨어러블 디스플레이 구현을 위해 직물(fabric)형과 섬유(fiber)형 두 가지 방식으로 연구를 진행했다.
연구팀은 2015년에 열접착 평탄화 기술을 통해 거친 직물 위에서 수백 나노미터 두께의 유기발광소자를 동작하는 데 성공했다. 2016년에는 용액 속 실을 균일한 속도로 뽑는 딥 코팅(dip-coating) 기술을 통해 얇은 섬유 위에서도 높은 휘도를 갖는 고분자발광소자를 개발했다.
위와 같은 연구를 바탕으로 최 교수 연구팀은 옷감의 유연성을 유지하면서 높은 휘도와 효율 특성을 갖는 직물형 유기발광소자를 구현했다.
최고 수준의 전기 광학적 특성을 갖는 이 소자는 자체 개발한 유무기 복합 봉지(encapsulation) 기술을 통해 장기적 수명이 검증됐고, 굴곡 반경 2mm의 접히는 환경에서도 유기발광소자가 동작한다.
연구팀은 최고 수준의 휘도와 효율을 갖는 의류 형태의 유기발광 다이오드를 구현했다는 의의가 있으며 보고된 직물 기반의 발광소자 중 가장 유연하다고 밝혔다.
이번 연구를 통해 의류형 발광소자의 기계적 특성에 대한 심층적 분석이 더해져 직물 기반 전자산업 발전에 도움이 될 수 있을 것으로 기대된다.
최승엽 박사과정은 “직물 특유의 엮이는 구조와 빈 공간은 유기발광소자에 가해지는 기계적 스트레스를 크게 낮추는 역할을 한다”며 “직물을 기판으로 사용해 디스플레이를 구현하면 유연하며 구겨지는 화면을 볼 수 있다”고 말했다.
최경철 교수는 “우리가 매일 입는 옷 위에서 디스플레이를 보는 것이 먼 미래가 아니다”며 “앞으로 빛이 나는 옷은 패션, 이-텍스타일(E-textile) 뿐 아니라 자동차 산업, 광치료와 같은 헬스케어 산업에도 큰 영향을 끼칠 것이다”고 말했다.
이번 연구는 ㈜코오롱글로텍과의 공동 연구로 진행됐고 산업통상자원부 산업기술혁신사업의 지원으로 수행됐다.
□ 사진 설명
사진1. 옷감 위에서 구동 되고 있는 유기발광다이오드 사진
사진2. 유기발광다이오드
사진3.고유연성 직물 기반 유기발광다이오드의 전류-전압-휘도 및 효율 특성
2017.08.24
조회수 24495
-
김형수 교수, 물과 알코올의 마랑고니 효과 정량화에 성공
〈 김 형 수 교수 〉
우리 대학 기계공학과 김형수 교수 연구팀이 알코올과 물이 만날 때 발생하는 마랑고니 효과의 현상을 정량화하는 데 성공했다.
이 기술을 통해 계면활성제의 광범위한 사용을 억제하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 기대된다.
이번 연구 결과는 미국 프린스턴 대학의 하워드 스톤(Howard Stone) 교수와 공동으로 진행됐고 국제 학술지 ‘네이처 피직스(Nature Physics)’ 7월 31자 온라인 판에 게재됐다.
마랑고니 효과는 계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 와인의 눈물 현상이 대표적인 마랑고니 효과이다.
물과 알코올처럼 서로 100% 섞이는 액체들은 만나는 즉시 혼합과 퍼짐이 동시에 이뤄지는 것처럼 보이지만 사실은 그렇지 않다. 실제 물의 표면장력은 알코올보다 3배 정도 큰데 이 표면장력 차이 때문에 두 액체가 닿는 순간 계면에서 마랑고니 효과가 발생한다. 이후 혼합이 일어나기까지는 일정 시간이 소요된다.
이와 같은 현상은 20세기 초반에 보고된 후 많은 논의가 됐지만 복잡한 물리화학적 혼합 현상을 정량화하는 데 한계가 있었다.
김 교수는 광학의 특성을 이용한 다양한 유동장 가시화(Flow visualization) 기법과 초고속 이미징 장비를 이용해 실험을 수행했다.
유동장 가시화는 물과 같은 투명한 액체가 얼마나 빠르게 흐르는지 파악하기 위해 입자를 띄워서 이들을 추적하거나 액체의 밀도차이 변화를 광학적 기법을 이용해 감지한 후 촬영하는 방식이다.
이를 통해 물과 알코올 사이에 발생하는 복잡한 물리화학적 현상의 정량화에 성공했고 이를 토대로 실험 결과를 예측하는 이론 모델도 개발했다.
이론 모델을 이용해 마랑고니 대류 유동 속도의 세기와 알코올 액적의 퍼지는 넓이, 유동장이 발달되는데 소요되는 시간을 예측할 수 있다. 이를 통해 실제 적용 상황과 조건에 맞춰 마랑고니 효과 유발 물질(알코올)의 종류와 액적의 크기를 설계할 수 있다.
연구팀은 이번 성과가 유체 계면을 2차 오염시키지 않고 계면에 따라 원하는 물질을 높은 효율로 쉽게 전달하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 예상했다.
무엇보다 이번 연구 결과는 약물 전달을 위해 사용되는 계면활성제를 알코올이 대체할 수 있는 가능성을 보였다는 의의가 있다. 체내에 축적되는 특성을 갖는 계면활성제를 대체할 수 있다면 여러 부작용을 방지할 수 있을 것으로 기대된다.
김 교수는 “약물전달을 위해 계면활성제를 사용하는데 체내에 흡수되면 배출이 어려워 축적이 되고 천식환자에게 심장질환을 유발하는 등 여러 부작용이 발생한다.”며 “알코올과 같은 새로운 약물전달 물질을 사용해 이러한 부작용으로부터 자유로워지길 기대한다”고 말했다.
□ 사진 설명
사진1. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 유동(Marangoni flows)
사진2. 아지랑이(Schlieren) 가시화 기법을 이용한 알콜 종류에 따른 혼합 유동 비교 (왼쪽 메타놀, 오른쪽 아이소프로필 알코올)
사진3. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 혼합 유동(Marangoni mixing flow)의 측면 가시화 결과
2017.08.17
조회수 24787
-
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉
우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다.
이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다.
이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다.
폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다.
폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다.
이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다.
연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다.
코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다.
반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다.
연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다.
개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다.
최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 22443
-
김지한 교수, 비정질 다공성 물질의 가스 흡착 성능 분석법 개발
〈 김 지 한 교수 〉
우리 대학 생명화학공학과 김지한 교수 연구팀이 비정질 다공성 물질의 가스 흡착 성능을 예측하는 방법을 개발했다.
이번 연구는 교토대 임대운 교수, 서울대 백명현 교수, 가천대 윤민영 교수, 사우디 아람코 연구소와 공동으로 진행됐다.
정우석 박사과정생과 임대운 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국국립과학원회보(PNAS)’ 7월 10일자 온라인 판에 게재됐다.
금속-유기물 구조체(metal-organic framework, MOF)는 넓은 표면적과 풍부한 내부 공극을 가지고 있어 다양한 에너지 및 환경 관련 소재로 응용될 수 있다.
이런 금속-유기물 구조체 물질 대부분이 결정성 물질이지만 합성과정 또는 산업 공정에 사용 중에 구조가 붕괴돼 결정성을 잃기 쉽다. 그로 인해 내부 구조를 파악할 수 없게 되면 기존의 어떠한 컴퓨터 시뮬레이션 방법론으로도 분석이 어려웠다.
김 교수 연구팀은 이와 같이 붕괴된 금속-유기물 구조체의 물성치를 결정성 금속-유기물 구조체의 물성치로 대체해 우회적으로 비정질 구조(amorphous structure)의 다공성 물질에서 물성치 분석이 가능함을 증명했다.
연구팀은 우선 12,000여 개의 결정성 금속-유기물 구조체에 대해 다양한 가스 및 온도 조건에서 가스 흡착 물성치 계산을 수행했다. 이로부터 특정 가스 및 온도 조건에서 비슷한 물성치를 보인 금속-유기물 구조체들은 다른 가스나 온도 조건에서도 비슷한 흡착 성능을 보인다는 것을 보였다.
이러한 결과를 바탕으로 연구팀은 붕괴된 구조가 보이는 메탄가스 흡착성능과 가장 비슷한 물성치를 지닌 결정성 금속-유기물 구조체들을 12,000여 개 구조 중에서 선별했다.
그 후 전혀 다른 온도 및 수소가스 흡착에 있어서도 붕괴된 구조의 실험값과 결정성 금속-유기물 구조정보를 이용한 시뮬레이션 결과가 잘 일치한다는 상호교환성(transferability)를 확인했다.
이번 연구성과는 구조 정보가 없는 경우에도 금속-유기물 구조체와 같은 다공성 물질들에서 물성치를 예측할 수 있어 앞으로 이산화탄소 포집, 가스 분리 및 저장소재 개발에 활용될 것으로 기대된다.
이번 연구는 Saudi Aramco-KAIST CO2 Management Center의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 구조-물성치 맵에 나타나는 경향성과 붕괴된 구조의 경향성
그림2. 붕괴된 금속-유기물 구조체 실험결과와 결정성 금속-유기물 구조체 시뮬레이션 결과의 상호교환성
2017.07.21
조회수 23286
-
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다.
이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다.
이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다.
김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다.
혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다.
호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다.
호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다.
하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다.
기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다.
연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다.
이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다.
특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다.
예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다.
연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다.
특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다.
연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다.
16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다.
김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다.
또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다.
이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다.
본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다.
□ 그림 설명
그림1. 어카운트 오브 케미칼 리서치 표지 이미지
그림2. 다종 입자 촉매
그림3. 함금촉매 합성
그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 36514
-
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉
우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다.
이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다.
뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다.
대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다.
연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다.
김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다.
이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명
그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 23074
-
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉
우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다.
인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다.
내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다.
이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다.
그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다.
이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다.
우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다.
그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다.
이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다.
연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다.
이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다.
이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 25432