< (왼쪽부터) 생명과학과 김상규 교수, 김재철AI대학원 황성주 교수, 생명과학과 김태인 석박사통합과정, 김재철AI대학원 이슬 석박사통합과정 >
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다.
우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다.
천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다.
식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다.
< 그림 1. 리드레트로(READRetro)를 활용해 예측한 천연물 생합성 경로. 천연물 생합성 연구에서 주목받고 있는 catharanthine, tarbersonine을 비롯한 다양한 천연물의 생합성 경로를 성공적으로 예측하였다. >
연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다.
김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다.
< 그림 2. 웹으로 구현된 리드레트로(READRetro). readretro.net 웹 페이지를 활용해 누구든 관심있는 천연물의 생합성 경로를 다양한 옵션으로 예측할 수 있다. >
생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis).
한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.
기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10우리 대학은 삼성리서치 김태수 상무가 이끄는 전기및전자공학부 윤인수 교수 연구팀이 POSTECH, 조지아공과대학교(Georgia Tech) 연구진과 함께 구성한 연합팀 ‘팀 애틀랜타(Team Atlanta)’가 8월 8일(현지 시각) 미국 라스베이거스에서 열린 세계 최대 해킹 콘퍼런스‘DEF CON 33’에서, 미국 국방고등연구계획국(DARPA) 주관‘AI 사이버 챌린지(AIxCC)’에서 최종 우승을 차지했다고 9일 밝혔다. 이번 성과로 팀은 미화 400만 달러(약 55억 원)의 상금을 수상하며, 인공지능 기반 자율 사이버 방어 기술의 우수성을 세계 무대에서 입증했다. AI 사이버 챌린지(AIxCC)는 DARPA와 미국 보건첨단연구계획국(ARPA-H)이 공동 주관하는 2년간의 글로벌 경연으로, 인공지능 기반 CRS를 활용해 소프트웨어의 취약점을 자동 분석·탐지·수정하는 능력을 겨룬다
2025-08-10회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다. *복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것 우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph
2025-08-05이차전지 양극 소재는 높은 충전 속도, 에너지 밀도, 안정성 등 어려운 기준들을 전부 충족해야 하기 때문에 소재 개발을 위해서는 수많은 소재 후보군을 고려해 탐색을 진행해야만 한다. 국내 산학 협력 연구진이 AI 및 자동화 시스템을 활용해 연구자의 개입 없이 이차전지 양극 소재의 개발을 진행하는 자율 탐색 실험실*을 구축했다. 이를 통해 개발 과정 중 발생하는 연구자의 노동을 최소화하며 탐색 기간을 93% 단축했다. *자율 탐색 실험실: 자율적으로 실험을 설계, 수행, 분석하여 최적의 소재를 탐색하는 플랫폼 우리 대학 신소재공학과 서동화 교수 연구팀이 포스코홀딩스 미래기술연구원(원장 김기수) 에너지소재연구소 LIB소재연구센터 연구팀과 산학 협력 연구를 통해, AI 및 자동화 기술을 활용해 이차전지 양극 소재를 탐색하는 자율 탐색 실험실을 구축했다고 3일 밝혔다. 이차전지 양극 소재 개발은 필연적으로 시료의 무게를 칭량하고 이송하는 정량, 혼합, 소결* 및 분석 과정을 거
2025-08-05우리 대학은 7월 31일 오전 국회의원회관에서 ‘인공지능 대전환(AX)의 미래: 피지컬 AI’를 주제로, 한국의 AI 반도체 및 제조업 강점을 활용한 기술패권 전략을 논의하기 위한 초당적 정책 포럼인 ‘제1회 국가미래전략기술포럼’을 성공적으로 개최했다고 31일 밝혔다. 이번 포럼은 KAIST가 주관하고, 국회 과학기술정보방송통신위원회 간사 최형두 의원(국민의힘)과 산업통상자원중소벤처기업위원회 위원 김한규 의원(더불어민주당)이 공동 주최하였다. 본 포럼은 10월을 제외하고 매월 한 차례씩 총 5회 개최되는 국가미래전략기술포럼의 첫 출발점이다. 포럼의 대주제인 ‘인공지능 대전환(Artificial Intelligence Transformation, AX)’은 생성형 AI의 확산으로 산업, 경제, 사회 전반에 걸쳐 촉발된 구조적 변화에 대응하기 위해 기획됐다. 제1회 포럼의 주제는 ‘피지컬 AI(P
2025-07-31