< (왼쪽부터) 우리 대학 생명과학과 서성배 교수, 김진은 박사 (오른쪽 상단 왼쪽부터) 김신혜 박사, 정원교 연구원 >
‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해낼까?’ 우리 대학 연구진은 이 질문에서 출발해, 뇌가 단순히 총열량(칼로리)을 감지하는 수준을 넘어 특정 영양소, 특히 포도당을 선택적으로 인식할 수 있다는 사실을 입증했다. 이번 연구는 향후 식욕 조절 및 대사성 질환 치료 전략에 새로운 패러다임을 제시할 수 있을 것으로 기대된다.
우리 대학 생명과학과 서성배 교수 연구팀이 바이오및뇌공학과 박영균 교수팀, 생명과학과 이승희 교수팀, 뉴욕 알버트 아인슈타인 의과대학과의 협력을 통해, 배고픔 상태에서 포도당이 결핍된 동물이 장내의 포도당을 선택적으로 인식하고 선호하도록 유도하는 장-뇌 회로의 존재를 규명했다고 9일 밝혔다.
생물은 당, 단백질, 지방 등 다양한 영양소로부터 에너지를 얻는다. 기존 연구들은 장내 총열량 정보가 시상하부의 배고픔 뉴런(hunger neurons)을 억제함으로써 식욕을 조절한다는 사실을 밝혀왔으나, 특정 포도당에 특이적으로 반응하는 장-뇌 회로와 이에 반응하는 특정 뇌세포의 존재는 규명되지 않았다.
연구팀은 이번 연구를 통해 뇌의 기능에 필수적인 포도당을 감지하고 필요한 영양소에 대한 섭취 행동을 조절하는 ‘장-뇌 회로’를 밝혀내는 데 성공했다.
또한, 이 회로는 뇌의 ‘스트레스 반응 세포(CRF 뉴런*)’가 배고픔이나 외부 자극뿐만 아니라, 소장에 직접 유입된 특정 열량 영양소에 대해서도 초 단위로 반응하며, 특히 ‘포도당(D-glucose)’에 선택적으로 반응한다는 점을 처음으로 입증했다.
*CRF 뉴런: 우리 몸이 심리적·물리적 스트레스에 대응하는 핵심 생리 시스템은 시상하부-뇌하수체-부신 축(Hypothalamus-Pituitary-Adrenal Axis, HPA axis)이다. 이 축의 중심에는 시상하부에서 CRF(부신피질호르몬 방출인자)를 분비하는 뉴런이 있으며, 이들은 다양한 스트레스 자극에 반응해 코르티솔 분비를 유도하고, 생리 및 대사 균형을 유지하는 신경 내분비 조절의 중추로 알려져 있다.
연구팀은 실시간 뇌 속을 정밀하게 추적할 수 있는 광유전학 기반 신경 활성 조절 및 회로 추적 기법을 활용해서, 포도당(D-글루코스, L-글루코스,) 아미노산, 지방 등 다양한 영양소의 쥐의 소장 내 직접 주입하고 관찰했다.
그 결과, 뇌 시상하부의 ‘시상하부 시상핵(PVN)* 부위’에 있는 CRF 뉴런 중 D-글루코스(glucose) 포도당에만 선택적으로 반응하며, 다른 당류나 단백질·지방류에는 반응하지 않거나 반대 방향의 반응을 보이는 것을 확인했다. 이는 뇌가 장내 영양소가 유입 시 반응에 대해 단일 뇌세포 수준에서 어떤 방향성을 유도한다는 것을 처음 확인한 것을 의미한다.
* 시상하부 시상핵(paraventricular nucleus, PVN): 뇌의 시상하부(hypothalamus) 안에 있는 매우 중요한 신경핵(뉴런 무리)으로, 신체 항상성(몸의 균형 유지)을 조절하는 핵심 구조
또한, 연구팀은 소장의 포도당 감지 신호가 ‘척수신경’을 거쳐 뇌의 특정 부위(등쪽 외측 팔곁핵,parabrachial nucleus, PBNdl)을 통해 PVN의 CRF 뉴런으로 전달되는 특징적인 회로를 밝혀냈다. 반면, 아미노산이나 지방 등 기타 영양소는 미주신경(vagus nerve)이란 다른 통로로 뇌에 전달된다는 사실도 확인했다.
광유전학적 억제 실험에서도, 공복 상태의 생쥐에서 CRF 뉴런을 억제하면 동물은 더 이상 포도당을 선호하지 않게 됐으며, 이 회로가 영양소 선택에 있어 포도당 특이적 선호를 유도하는 데 필수적임이 드러났다.
< □ 연구 그림 정리 설명 •CRF 뉴런은 다른 영양소와는 달리 장내 칼로리를 지닌 포도당에 특이적 으로 반응한다. •CRF 뉴런은 배고픈 마우스가 다른 영양소보다 포도당을 선택하는데 필수적이다. •배고픔에 의해 활성화된 등쪽 외측 팔곁핵 뉴런은 포도당에 의해 억 제되고 CRF 뉴런을 자극한다. •포도당에 의해 유발된 CRF 뉴런의 반응은 미주신경이 아닌 척수신경을 필요로 한다. >
이 연구는 서 교수가 뉴욕대(NYU) 재직 시절 초파리를 모델로, 장내 포도당(글루코스) 및 당을 선택적으로 감지하는 ‘DH44 뉴런’을 발견했던 점을 착안해, 포유류에서도 시상하부 뉴런이 포도당 특이적 반응에 있어 기능적 유사성을 보일 것이라는 가설에서 시작되었다.
이 가설을 입증하기 위해 서 교수 연구팀 김진은 박사(KAIST 박사 졸, 現 캘리포니아공과대학교 연수연구원)가 학위과정 중 생쥐 실험을 통해 배고픈 쥐는 장에 주입된 다양한 영양소 중 열량을 지닌 포도당을 선호하며, CRF 뉴런이 빠르고 특이적인 반응을 보인다는 사실을 확인했다.
또한, 같은 팀 정원교 연구원(KAIST 학사 졸, 現 캘리포니아공과대학교 박사과정)과 함께 실험과 모델링을 통해 CRF 뉴런의 중요성을 규명했고, 김신혜 박사는 협업을 통해 장-뇌 회로 중 특정 척추 신경세포가 장의 정보를 뇌로 전달 한다는 놀라운 발견을 입증했다.
김진은 박사와 김신혜 박사는 “이 연구는 ‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해내는가?’라는 단순하지만, 본질적인 질문에서 시작됐고, 이번 연구에서 장-뇌 연결 회로의 핵심 축인 척수신경의 역할을 규명하고 장내 특정 영양소를 감지한 후 이를 뇌에 전달하는 척수 기반 신경 회로가 우리 몸의 에너지 대사 조절과 항상성 유지에 핵심적일 것이라는 것을 밝혀냈다”고 말했다.
서성배 교수는 “이번 연구는 포도당에 특화된 장-뇌 신호 경로를 규명함으로써, 비만·당뇨병 등 대사 질환의 새로운 치료 표적을 제시할 수 있다”며 “향후 아미노산, 지방 등 다른 필수 영양소를 감지하는 유사 회로의 존재와 그 상호작용 메커니즘을 밝히는 연구로 확장될 예정”이라고 밝혔다.
우리 대학 김진은 박사, 김신혜 박사, 정원교 학생이 공동 제1 저자로 참여한 이번 연구의 결과는 국제 학술지 ‘뉴런(Neuron)’에 2025년 6월 20일 온라인 게재됐다.
※논문명: Encoding the glucose identity by discrete hypothalamic neurons via the gut-brain axis
※DOI: https://doi.org/10.1016/j.neuron.2025.05.024
이번 연구는 삼성미래기술육성사업, 한국연구재단 리더과제, 포스코 청암재단 사이언스 펠로십, 아산재단 의생명과학 장학사업, 기초과학연구원, KAIST KAIX 사업의 지원을 통해 수행됐다.
우리 대학 뇌인지과학과 권정태 교수가 MIT, 하버드 의과대학과의 공동연구를 통해, 면역 반응에서 분비되는 사이토카인이 뇌 감정 회로에 직접 작용하여 불안 행동을 조절한다는 사실을 세계 최초로 규명했다. 염증성 사이토카인 IL-17A와 IL-17C가 정서를 조절하는 것으로 알려진 편도체의 특정 뉴런에 작용해 흥분성을 증가시킴으로써 불안을 유발하며, 반대로 항염증성 사이토카인 IL-10은 같은 뉴런에서 흥분성을 억제해 불안 완화에 기여하는 양방향 조절 메커니즘을 실험적으로 입증했다. 연구팀은 쥐 모델에서 피부 염증을 유발한 후, 면역치료제 (IL-17RA 항체)를 투여해 피부 증상은 완화되었으나 불안 수준이 높아진 현상을 관찰하였다. 이는 IL-17 계열 사이토카인의 순환 농도가 높아지며 편도체 뉴런이 과활성화된 데 따른 결과로 분석됐다. 연구진은 또한, 항염증 사이토카인 IL-10이 같은 편도체 뉴런의 흥분성을 낮추는 작용을 하며 불안 반응을 완화할 수 있음을 밝혀냈
2025-07-24기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다. 우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다. 기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충
2025-07-16우리 몸의 면역세포인 T세포를 활성화시켜 암세포를 제거하도록 유도하는 첨단 치료법인 ‘면역항암제’는 가장 치명적인 뇌종양 ‘교모세포종(Glioblastoma)’에는 거의 반응하지 않고, 치료에 대한 저항성이 높아 단독 치료로는 효과가 매우 제한적이라는 한계가 있었다. 이에 우리 연구진이 장내 미생물과 그 대사산물을 활용해 뇌종양의 면역치료 효과를 높일 수 있는 새로운 치료 전략을 세계 최초로 입증했다. 향후 미생물을 기반으로 한 면역치료 보완제 개발에 대한 가능성도 보여줬다. 우리 대학 생명과학과 이흥규 교수 연구팀이 장내 미생물 생태계 변화에 주목해 교모세포종 면역치료의 효율을 크게 높이는 방법을 발굴하고 이를 입증했다고 1일 밝혔다. 연구팀은 교모세포종이 진행되면서 장내에서 중요한 아미노산인 ‘트립토판(tryptophan)’의 농도가 급격히 줄어들고, 이로 인해 장내 미생물 생태계가 변화한다는 점에 주목했
2025-07-01짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다. 우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다. 연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭
2025-06-02우리 대학 화학과 한순규 교수 연구팀이 독일의 유서 깊은 학술 출판사 티메(Thieme)가 수여하는 2024 신렛(Synlett) 최우수 논문상(Synlett Best Paper Award 2024)을 수상했다고 30일 밝혔다. 티메는 매해 유기화학 분야 SCI 저널인 신렛에 출판된 논문 중 최우수 논문 1편을 선정해 최우수 논문상을 수여해왔다. 한순규 교수 연구팀은 지난 10여 년간 천연물 합성 연구에 집중하며 다양한 생리활성을 가지는 이차대사물의 효율적이고 독창적인 합성법을 개발했다. 특히 광대싸리나무에서 유래하는 초복잡 세큐리네가 천연물 합성분야에서는 세계적인 선도그룹으로 괄목할 만한 연구성과를 성취했다. 수상 논문에서 한순규 교수 연구팀은 세계 최초로 자연에서 극소량만 얻을 수 있는 희귀한 천연물인 4α-하이드록시알로세큐리닌과 세큐린진 F를 시중에 쉽게 구할 수 있는 시작 물질로부터 인공적으로 처음부터 끝까지 만들어내는 데 성공했다. 세큐리네가 천연물은
2025-05-30