< (왼쪽부터) 인하대 김종훈 교수, 우리대학 한규호 박사, 박정영 교수 >
백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다.
우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다.
연구진은 촉매 성능을 극대화하기 위해 기존의 백금 덩어리 촉매 형태에서 백금 원자가 고밀도로 표면에 분산되도록 하여, 더 적은 양의 백금으로 더 많은 촉매반응을 유도하였으며, 표면의 전자 구조를 제어하여 백금과 셀레늄 사이의 전자 상호작용을 활발하게 일어나도록 유도하였다. 이 과정을 통해 제작된 수 나노미터 두께의 백금 셀레나이드 박막은, 동일 조건에서 일반 백금 박막보다 전 온도 범위에서 더 우수한 일산화탄소 산화 성능을 나타냈다.
< 그림 1. (위) PtSe2 박막의 결정 구조를 나타내는 모식도. (왼쪽 아래) 측면에서 촬영한 주사형 투과 전자현미경 (cross-sectional HAADF-STEM) 및 (오른쪽 아래) 고해상도 투과 전자현미경(cross-sectional HRTEM) 이미지. 특히 왼쪽 아래의 이미지에서는 실제 백금과 셀레늄 원자들의 배열이 시각적으로 확인된다. >
특히, 표면에서는 일산화탄소와 산소가 골고루 비슷한 비율로 흡착되어 서로 반응할 기회가 높아졌고, 이로 인해 촉매 반응이 크게 향상됐다. 이러한 성능 향상의 핵심은 ‘셀레늄 결손(Se-vacancy)’으로 인해 노출이 확대된 표면 백금 원자들이 드러나면서 기체들이 붙을 수 있는 흡착점도 늘어났다는 데 있다.
연구진은 해당 백금 원자들이 실제 반응 과정에서 흡착점으로 작용했다는 사실을 포항가속기연구소에서 수행된 상압 엑스선 광전자분광(AP-XPS) 분석을 통해 실시간으로 확인했다. 이러한 고정밀 분석은 1나노미터 수준의 표면을 상압 환경에서 관찰할 수 있는 고도 장비 덕분에 가능했다. 동시에 컴퓨터 시뮬레이션 (밀도범함수이론*) 계산을 통해, 백금 셀레나이드가 일반 백금과는 다른 전자 흐름의 특성을 가지고 있음을 이론적으로도 입증했다.
*밀도범함수이론(Density Functional Theory, DFT): 전자 밀도(electron density)를 기반으로 시스템의 전체 에너지를 계산하는 방법
박정영 교수는 “이번 연구는 기존 백금 촉매와 다른 이차원 층상 구조의 백금 셀레나이드를 활용해, 기체 반응에 특화된 촉매 기능을 이끌어낸 새로운 설계 전략을 제시한 것”이라며, “백금과 셀레늄 사이의 전자적 상호작용이 일산화탄소와 산소를 균형있게 흡착하는 반응 조건을 만들었고 기존 백금보다 전체 온도내에서 반응성이 높도록 설계하여 실제 적용성이 향상되게 하였다. 이로써 원자 단위 설계, 2차원 물질 플랫폼, 흡착 조절 기술 등을 통해 고효율 촉매 반응 메커니즘을 구현할 수 있었다”고 밝혔다.
< 그림 2. (왼쪽) PtSe2 표면에서 진행되는 일산화탄소 산화 반응에 대한 모식도. 표면의 셀레늄이 떨어진 자리 아래에 존재하는 백금에 기체 반응물들이 흡착되어 반응이 진행된다. (가운데) 진공상태와 일산화탄소 산화반응 환경에서 연속적으로 진행된 상압 엑스선 광전자분광 분석. 진분홍색 픽은 표면에 노출된 백금의 존재를 보이고 이가 흡착점으로 기능함을 시사한다. (오른쪽 위) PtSe2 표면에 흡착한 일산화탄소와 산호의 흡착을 보여주는 모식도. 두 기체 사이의 흡착 에너지 차이가 일반적인 백금 표면에 대한 흡착에 비해 크게 완화되었다. (오른쪽 아래) 온도에 따른 PtSe2 박막과 백금 박막의 일산화탄소 산화 반응 성능 비교. >
이번 연구는 우리 대학 화학과 한규호 박사, 충남대 신소재공학과 최혁 박사, 인하대 김종훈 교수가 공동 제1 저자로 참여했으며, 세계적 권위의 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 지난 7월 3일 자로 게재됐다.
※ 논문 제목: Enhanced catalytic activity on atomically dispersed PtSe2 two-dimensional layers
※DOI: 10.1038/s41467-025-61320-0
한편, 이번 연구는 과학기술정보통신부의 중견연구자지원사업과 교육부의 중점연구소사업, 국가전략기술소재개발사업, 미국 국립과학재단(NSF) CAREER 프로그램, 인하대학교 연구비, UCF 박사후연구자 프로그램(P3)의 지원을 받아 수행됐으며, 포항가속기연구소 및 한국기초과학지원연구원(KBSI)의 협조로 가속기 기반 분석이 진행됐다.
급성 질병의 조기 진단과 만성 질환의 효율적 관리를 위해, 환자 가까이에서 신속하게 진단할 수 있는‘현장진단(Point-of-Care, POCT)’기술이 전 세계적으로 주목받고 있다. POCT 기술의 핵심은 특정 물질을 정확히 인식하고 반응하는‘효소’에 있다. 그러나 기존의 ‘자연효소’는 고비용·불안정성의 한계를 지니며, 이를 대체하는 ‘효소 모방 촉매(nanozyme)’ 역시 낮은 반응 선택도라는 문제를 안고 있다. 최근 국내 연구진은 기존 효소모방촉매보다 38배 이상 향상된 선택도를 구현하고, 단 3분 만에 육안으로 진단 결과를 확인할 수 있는 고감도 센서 플랫폼을 개발하는 데 성공했다. 우리 대학 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수, 가천대학교 김문일 교수 연구팀과의 공동연구를 통해, 과산화효소 반응만을 선택적으로 수행하면서도 높은 반응 효율을 유지하
2025-07-29전 세계적으로 매년 수십억 개의 타이어가 폐기되며, 이는 심각한 환경오염의 주요 원인 중 하나로 지목되고 있다. 우리 연구진이 폐타이어를 고무나 나일론 섬유 원료로 쓰이는 고부가가치 화학 원료인 고순도의 고리형 알켄으로 선택적 전환하는 데 성공했다. 이는 폐타이어 재활용 분야의 새로운 전환점으로 평가된다. 우리 대학 화학과 홍순혁 교수 연구팀이 이중 촉매 기반 연속 반응 시스템을 개발해 폐타이어 문제를 효과적으로 해결했다고 26일 밝혔다. 폐타이어는 합성고무와 천연고무의 복합체로 구성되며, 실리카, 카본블랙, 산화방지제 등의 첨가제를 포함해 물리적 강도와 내구성이 극대화되어 있다. 특히 가황 공정을 통해 고무 사슬 간의 가교가 형성돼 열과 압력에 강한 구조를 갖게 되는데, 이는 폐타이어의 화학적 재활용을 어렵게 만드는 주요 원인 중 하나다. 그동안 폐타이어의 재활용은 주로 열분해 방식이나 물리적 분쇄 재활용에 의존해 왔다. 열분해 방식은 350~800°C의 고온
2025-06-26임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16수소는 탄소를 배출하지 않는 청정 에너지원으로 주목받고 있다. 이 가운데 물을 전기로 분해하는 수전해(water electrolysis) 기술은 친환경 수소 생산 방식으로 주목받으며, 특히 양이온 교환막 수전해(PEMWE)는 고순도 수소를 고압으로 생산할 수 있어 차세대 수소 생산 기술로 평가받는다. 그러나 기존 PEMWE 기술은 고가의 귀금속 촉매와 코팅재에 대한 의존도가 높아, 상용화에 한계를 안고 있었다. 우리 연구진이 이러한 기술적·경제적 병목을 해결할 새로운 해법을 제시했다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 한국에너지기술연구원(원장 이창근) 두기수 박사와의 공동연구를 통해, 고가의 백금(Pt) 코팅 없이도 고성능을 구현할 수 있는 차세대 수전해 기술을 개발했다고 11일 밝혔다. 연구팀은 수전해 전극에서 고활성 촉매로 주목받는 ‘이리듐 산화물(IrOx)’이 제 성능을 발휘하지 못하는 주된 원인에 집중하였다. 그 이유는
2025-06-11태양광, 풍력 등 재생에너지를 활용한 수소 생산 시스템에서는 에너지원의 특성상 전력 공급이 일정하지 않아, 수전해 장치*의 부하가 지속적으로 변화한다. KAIST 연구진이 이런 전력 부하의 변동이 불가피한 그린 수소 생산 환경에서, 전기 에너지 효율을 높이고 낮은 전압에서도 수소 생산 효율을 높이는 촉매의 열화(성능 저하)를 정량적으로 진단할 수 있는 세계 최초의 방법론을 제시했다. *수전해 정치(Water Electrolyzer): 물을 전기 분해하여 수소와 산소를 생산하는 장치로 탄소 배출 없이 수소를 생산할 수 있어 그린 수소 생산의 핵심 기술로 주목받고 있음 우리 대학 생명화학공학과 정동영 교수 연구팀이 수전해 시스템에서 촉매의 실질적인 수명을 예측할 수 있는 새로운 평가 지표인 ‘운영 안정성 지수’를 개발했다. 연구팀은 수전해 시스템이 꺼지거나 낮은 부하로 운전될 때 발생할 수 있는 촉매 및 지지체의 열화 현상 촉매의 손상이나 성능 저하 현상을
2025-05-21