< (왼쪽부터) 전기및전자공학부 최신현 교수, 배종민 석사과정, 한양대 권초아 박사후연구원, 김상태 교수 >
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다.
우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다.
* 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함
공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을 도핑하는 방식으로 소자의 균일성과 성능을 향상할 수 있다는 사실을 실험과 원자 수준의 시뮬레이션을 통해 원리를 규명했다.
< 그림 1. 본 연구에서 개발한 이종원자가 이온 도핑 결과, 그리고 개선 효과와 이에 기반하는 물질적인 원리 개념도 >
공동 연구팀은 이러한 불규칙한 소자 신뢰성 문제를 해결하기 위해 이종원자가 할라이드(halide) 이온을 산화물 층 내에 적절히 주입하는 방법이 소자의 신뢰성과 성능을 향상할 수 있음을 보고했다. 연구팀은 이러한 방법으로 소자 동작의 균일성, 동작 속도, 그리고 성능이 증대됨을 실험적으로 확인했다.
연구팀은 또한, 원자 단위 시뮬레이션 분석을 통해 결정질과 비결정질 환경에서 모두 실험적으로 확인한 결과와 일치하는 소자 성능 개선 효과가 나타남을 보고했다. 그 과정에서 도핑된 이종원자가 이온이 근처 산소 빈자리(oxygen vacancy)를 끌어당겨 안정적인 소자 동작을 가능하게 하고, 이온 근처 공간을 넓혀 빠른 소자 동작을 가능하게 하는 원리를 밝혀냈다.
최신현 교수는 "이번에 개발한 이종원자가 이온 도핑 방법은 뉴로모픽 소자의 신뢰성과 성능을 획기적으로 높이는 방법으로서, 차세대 멤리스터 기반 뉴로모픽 컴퓨팅의 상용화에 기여할 수 있고, 밝혀낸 성능 향상 원리를 다양한 반도체 소자들에 응용할 수 있을 것이다ˮ 고 밝혔다.
전기및전자공학부 배종민 석사과정, 한양대학교 권초아 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 6월호에 출판됐다. (논문명 : Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems)
한편 이번 연구는 한국연구재단 신소자원천기술개발사업, 신재료PIM소자사업, 우수신진연구사업, 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업, 그리고 국가슈퍼컴퓨팅센터 혁신지원프로그램의 지원을 받아 수행됐다.
우리 대학 전기및전자공학부 교수이자 ICT 석좌교수인 유회준 교수가 2025년 대한민국학술원 신임회원으로 선출됐다. 유 교수는 7월 11일 개최된 대한민국학술원 총회를 통해 공식 선출되었으며, 전자공학 분야에서의 지속적인 연구 성과와 학술 기여를 바탕으로 선임되었다. 당월 18일 서울 서초구에 위치한 대한민국학술원에서 열린 신임회원 회원증서 수여식에 참석하여 선임장을 수여받았다. 대한민국학술원은 1954년 설립된 교육부 산하의 국가 학술기관으로, 국내 학문 발전에 이바지한 석학을 대상으로 매년 각 학문 분과별로 극소수의 신임회원만을 엄정한 심사를 통해 선발하고 있다. 올해는 전국에서 총 8명이 신임회원으로 선정되었으며, 유 교수는 자연과학분과 제3분과(공학)에서 유일하게 선출되었다. 학술원은 학문적 업적이 탁월하고 해당 분야의 발전에 기여한 석학을 회원으로 선출하여, 이들의 연구를 지원하고 학술 정책 자문, 국내외 학술 교류, 우수학술도서 선정, 학술원상 시상 등의 다양한
2025-07-22인공지능과 로봇 기술의 동반 발전 속에서, 로봇이 사람처럼 효율적으로 환경을 인식하고 반응하는 기술 확보가 중요한 과제로 떠오르고 있다. 이에 한국 연구진이 별도의 복잡한 소프트웨어나 회로 없이도 생명체의 감각 신경계를 모사한 인공 감각 신경계를 새롭게 구현해 주목받고 있다. 이 기술은 에너지 소모를 최소화하면서 외부 자극에 지능적으로 반응할 수 있어, 초소형 로봇이나 로봇 의수 등 의료 및 특수 환경에서의 활용이 기대된다. 우리 대학 전기및전자공학부 최신현 석좌교수, 충남대학교 반도체융합학과 이종원 교수 공동연구팀이 생명체의 감각 신경계 기능을 모사하는 차세대 뉴로모픽 반도체 기반 인공 감각 신경계를 개발하고, 이를 통해 외부 자극에 효율적으로 대응하는 신개념 로봇 시스템을 증명했다고 15일 밝혔다. 사람을 포함한 동물은 안전하거나 익숙한 자극은 무시하고, 중요한 자극에는 선별적으로 민감하게 반응함으로써, 에너지 낭비를 방지하면서도 중요한 자극에 집중해 민첩하게 외부 변
2025-07-15기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다. 신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집
2025-04-25기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수
2025-01-22우리 연구진이 공정 비용이 낮고 초저전력 동작이 가능하여 기존의 메모리를 대체하거나 차세대 인공지능 하드웨어를 위한 뉴로모픽 컴퓨팅(Neuromorphic Computing) 구현에 사용될 메모리 소자를 개발하여 화제다. 전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다. ☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여, 이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는 메모리 소자. 기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며 소모 전력이 높은 문제점이 있었다. 최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적
2024-04-04