-
난소암환자의 보다 정확한 생존기간 예측 가능해져
- “개인 맞춤형 의약품 개발에 핵심 기술이 될 것” -
난소암환자의 생존기간 예측이 한층 더 정확해진다!
우리 학교 바이오 및 뇌공학과 이도헌 교수 연구팀이 난소암환자의 선천적 유전특징과 후천적 유전자 발현특성이 복합적으로 영향을 미친다는 결과를 이용해 암환자의 생존기간을 보다 정확하게 예측하는 기술을 개발했다.
이번 연구 결과는 개인맞춤형 의약품개발에 핵심기술이 될 전망이다.
기존의 난소암환자 생존기간 예측을 위해 특이 유전자형과 유전자 발현 특성을 각각 찾는 데 초점을 맞추고 있었다. 그러나 암과 같이 개인의 유전적 특성과 후천적 요인에 따른 유전자 발현 패턴이 복합적으로 작용하는 복합질환의 치료효과와 생존기간을 예측하기에는 역부족이었다.
연구팀은 생물정보학(Bioinformatics) 기술 중 하나인 상호연관 네트워크 모델링을 이용해 개인별 유전자의 특징과 발현특성을 분석했다. 이를 생존기간의 인자로 사용해 난소암환자 생존기간 예측의 정확도를 13% 이상 높일 수 있었다.
또한, 항암치료 후 결과의 개인차를 유발하는 유전적 특성과 유전자 발현패턴의 상호작용모델을 제시함으로써 개인차에 의한 항암 치료 생존기간의 예측이 가능해졌다.
이도헌 교수는 “최근 전 세계적으로 차세대 유전자 연구와 개인 맞춤형 치료제 개발이 본격화되고 있는 시기”라며 “이번 연구 결과는 난소암 환자의 생존기간 예측 및 개인별 특성에 따른 맞춤형 치료의 기반이 될 것이다”라고 말했다.
KAIST 바이오 및 뇌공학과 이도헌 교수, 백효정 박사과정 학생, 김준호 박사과정 학생, 하버드대 이은정 박사, 삼성SDS 박인호 박사가 공동으로 실시한 이번 연구는 세계적 학술지인 ‘지노믹스(Genomics)’지 6월호 표지 논문으로 선정됐다.
2011.06.28
조회수 20082
-
빛을 이용해 뇌로 약물을 전달한다
KAIST 최철희 교수팀, 신경약물전달 신기술 세계 최초 개발
뇌혈관은 혈뇌장벽이라는 특수한 구조로 이루어져 있는데, 레이저로 혈뇌장벽의 투과성을 조절하여 투여된 약물을 뇌로 안전하게 전달하는 기술이 국내 연구진에 의해 세계 최초로 개발됐다.
이번 연구는 교육과학기술부의 ‘21세기 프론티어 뇌기능활용 및 뇌질환 치료기술개발사업단’(단장 김경진)의 지원을 받아 우리학교 최철희(바이오 및 뇌공학과․43) 교수팀 주도로 수행되었다.
혈뇌장벽은 대사와 관련된 물질은 통과시키고 그 밖의 물질은 통과시키지 않는 기능을 함으로써 약물이 뇌로 전달되는 것이 어려웠다.
이런 기능 때문에 우수한 효능을 가진 약물조차 대부분 차단되어 실제로 환자에게 적용할 수 없는 경우가 많아, 약물의 효능을 최대한 유지하면서 혈뇌장벽을 어떻게 통과시키느냐가 이 분야 연구의 핵심과제였다.
원활한 약물 전달을 위해 약물의 구조를 변경하거나 머리에 작은 구멍을 내고 약물을 주사하는 방법도 시도되었지만 고비용과 위험성으로 널리 응용되지 못하고 있었다.
최 교수팀은 기존 기술의 한계를 극복하기 위해 극초단파 레이저빔을 1000분의 1초 동안 뇌혈관벽에 쬐어주는 방법으로 혈뇌장벽의 기능을 일시적으로 차단함으로써 약물을 원하는 부위에 안전하게 도달할 수 있게 하는 신개념 약물전달기술을 개발했다.
레이저 빔을 약물이 들어있는 혈관에 쬐이면 혈뇌장벽이 일시적으로 자극을 받아 수도관이 새는 것 같은 현상을 일으켜 약물이 혈관 밖으로 흘러나와 뇌신경계 등으로 전달된다. 정지된 기능은 몇 분 뒤 다시 제 기능을 되찾는다.
최 교수는 “이번 연구는 새로운 신경약물전달의 원천기술을 확립하였다는 점과, 레이저를 이용한 안정적인 생체 기능 조절 기반기술을 구축하였다는 점에서 커다란 의미가 있다”며, “앞으로 이 기술을 세포 수준으로 영역을 확대하는 한편 후속 임상 연구를 통해 실용화할 계획”이라고 밝혔다.
연구 결과는 신경약물전달 원천기술로서 특허 출원 중이며 세계적 저명 학술지인 미국 국립과학원 회보(2011.05.16자)에 게재됐다.
레이저를 이용하여 뇌혈관의 기능을 조절함으로써 원하는 뇌 부위에 안정적으로 약물을 전달할 수 있는 원천기술
2011.05.26
조회수 19322
-
태양전지 소재 이용, 인공광합성 기술개발
- 국제저명학술지 어드밴스드 머티어리얼스 최근호 게재- 이종 분야 (생명과학, 태양전지)간 융합연구 성공사례로 주목
인류는 지금 지구온난화와 화석 연료의 고갈이라는 문제점을 갖고 있다. 이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있다.
이러한 가운데 우리학교 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했다.
이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 ‘친환경 녹색생물공정’ 개발의 중요한 전기가 될 전망이다.
광합성은 생물체가 태양광을 에너지원으로 사용해 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상이다.
박 교수팀은 이 같은 자연광합성 현상을 모방해 빛에너지로부터 정밀화학 물질 생산이 가능한 신개념 ‘생체촉매기반 인공광합성 기술’을 개발했다.
이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명해냈다.
박찬범 교수는 “지난해 양자점을 이용한 인공광합성 원천기술을 개발해 한국과학기술단체 총연합회가 선정한 10대 과학기술뉴스로 선정된 바 있다”며 “이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가된다”고 강조했다.
이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 4월 26일자에 게재됐으며 특허출원이 완료됐다.
한편, 연구결과는 재료공학과 생명과학분야의 창의적인 융합을 통해 새로운 공정기술을 개발하는 데 크게 기여했다는 평가를 받았으며, 교육과학기술부 신기술융합형 성장동력사업(분자생물공정 융합기술연구단), 국가지정연구실, KAIST EEWS 프로그램 등으로부터 지원받아 수행됐다.
2011.04.26
조회수 25810
-
새로운 생체시계 유전자 기능 밝혀내다
- 최준호 교수팀 4년간의 결실, 네이처지 2월호 게재 -
교육과학기술부(장관 이주호)는 24시간을 주기로 반복적으로 일어나는 행동 유형의 하나인 일주기성 생체리듬을 조절하는 새로운 유전자(투엔티-포, Twenty-four)와 이 유전자의 기능 메커니즘이 국내 연구진에 의해 세계 최초로 밝혀졌다고 발표했다.
투엔티-포는 ‘21세기 프론티어 뇌기능활용 및 뇌질환치료기술개발사업’(사업단장 김경진)의 지원을 받은 KAIST 생명과학과 최준호(58)교수·이종빈(30)박사 팀이 미국 노스웨스턴대학교 신경생물학과 라비 알라다 교수·임정훈 박사 팀과의 국제 공동연구를 통해 발견한 것으로 세계 최고 권위의 과학학술지인 ‘네이처(Nature)" 2월호(2011년2월17일자)에 게재됐다.
동 논문의 공동 주저자인 이종빈, 임정훈 박사는 KAIST에서 수학한 국내박사 출신(지도교수 최준호)으로 현재 박사후 연구원으로 동 연구에 참여하고 있으며, 이번 성과는 국내에서 양성한 신진연구원이 주도했다는 점에서 큰 의의를 지닌다.
연구팀에 따르면 형질 전환 초파리를 대상으로 지난 4년간 행동 유형을 실험한 결과 뇌의 생체리듬을 주관하는 신경세포에서 기존에 알려지지 않은 새로운 유전자인 투엔티-포가 존재한다는 사실을 알아냈다.
기존의 생체리듬에 관여하는 유전자들이 DNA에서 mRNA(전령RNA)로 바뀌는 과정(전사단계 : Transcription)에서 작용하는 것과 달리 투엔티-포는 전사단계의 다음단계인 mRNA가 리보솜에서 단백질로 만들어지는 단계에서 작용한다. 특히 투엔티-포는 생체리듬을 조절하는 중요한 유전자인 피리어드(Period) 단백질*에 영향을 미치는 것으로 밝혀졌다.
* 피리어드(Period) 단백질 : 생체 시계 세포들은 외부 자극없이 스스로 돌아가는 분자적 시계 구조를 신경세포마다 가지고 있는데, 피리어드는 이러한 분자적 시계의 구성 유전자 중 하나임. 피리어드 단백질은 생체 시계의 중심 유전자인 클락(Clock)에 의한 전사 활성을 억제 시키는 역할을 함
이는 유전자의 기능을 밝히는 실험을 통해 이 유전자가 만드는 단백질이 신경세포에서 어떻게 기능을 하는지 과학적으로 증명한 것이다. 이번 발견은 기존의 생체리듬에 관여하는 각종 유전자의 작용 메커니즘과 전혀 다른 것으로 생체리듬의 연구 분야에서는 획기적인 일로 평가받고 있다.
이 연구 결과는 앞으로 인간을 포함한 고등생물체의 수면장애·시차적응·식사활동·생리현상 등 일주기성 생체리듬의 문제를 해소하는 방안을 찾는데 중요한 열쇠가 될 것으로 전망된다.
최준호 교수는 “생체리듬의 조절이 유전자의 번역단계에서도 이루어지고 있음을 밝혀 생체시계의 새로운 작용 메커니즘을 찾아냈다는 점에서 연구 결과의 의미가 크다”고 말했다.
연구팀이 새 유전자의 이름을 투엔티-포(Twenty-four)라고 붙인 것은 일주기성(24시간)에 부합하고 유전자 기호 번호(CG4857)를 합한 숫자가 24라는 점에 착안한 것이다.
2011.02.16
조회수 24085
-
민범기 교수, 높은 굴절률의 메타물질 구현
- 세계 최고 권위 『네이처』지 발표, “전자기파나 광파의 경로를 마음대로 제어하는 초소형 광학소자 개발 가능”-
국내 연구진이 자연계에 존재하지 않는 높은 굴절률*을 갖는 메타물질을 이론적으로 검증하고 이를 실험적으로 구현하는데 성공하였다.
* 굴절률(index of refraction) : 서로 다른 매질의 경계면을 통과하는 파동이 굴절되는 정도 또는 투명한 매질로 빛이 진행할 때, 빛의 속도(광속) 이 줄어드는 비율
우리학교 민범기 교수(교신저자, 37세), 최무한 박사(제1저자, 39세) 및 이승훈 박사과정생(제1저자, 29세)의 주도 하에, 한국전자통신연구원(ETRI) 강광용 박사팀, KAIST 이용희 교수팀, 서울대 박남규 교수팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 일반연구자지원사업(신진연구)의 지원을 받아 수행되었다.
이번 연구결과는 세계 최고 권위의 과학 전문지인 ‘네이처(Nature)’지 2월 17일자에 게재되었는데, 특히 순수 국내연구진만으로 구성된 연구팀이 단독으로 발표한 이례적인 값진 연구성과로서 그 의미가 매우 크다. 또한 이 논문은 그 주에 발표된 논문 중에서 우수한 연구결과를 해당분야 전문가가 해설하는 ‘뉴스 앤드 뷰즈(News and Views)’에 선정되는 영예를 얻었다.
메타물질이란 기존에 물질의 정의를 완전히 뛰어넘는 혁신적인 개념으로서, 자연계에는 존재하지 않는 물성을 갖도록 고안된 물질의 통칭이다.
원자나 분자로 이루어진 자연계의 물질과는 달리, 메타물질의 단위 인공원자는 파장보다 훨씬 작은 인위적인 구조체로 이루어진다.
이러한 메타물질은 전자기파나 광파에 대한 물질의 물성을 인위적으로 마음대로 조절할 수 있다는 점에서 최근 전 세계 연구자들의 주목을 받고 있다. 일례로 광학투명망토 기술이나 음굴절률의 구현 등이 메타물질의 주된 연구 분야였으나, 이번 연구를 통하여 극한 고굴절률 메타물질이라는 새로운 영역을 개척하였다.
민범기 교수 연구팀은 분극율(分極率)이 매우 크면서도 반자성(反磁性)이 매우 약한 금속이면서 유전체(誘電體)인 메타물질을 독자적으로 설계․제작하여, 인위적인 값으로는 가장 높은 38.6에 달하는 굴절률을 세계 최초로 실증하였다.
이러한 연구결과는 음굴절률 메타물질의 영역을 넘어서 자연계에 존재하지 않는 매우 높은 굴절률(38.6)을 메타물질의 새로운 영역으로 포함시켰다는 점에서 의미가 크다.
민범기 교수는 “이번 연구는 향후 파장이하의 높은 해상도를 지닌 이미징 시스템이나, 전자기파 혹은 광파의 경로를 임의로 제어할 수 있는 전자기파나 광학소자 및 파장이하 규모의 초소형 광학소자를 개발하는데 크게 기여할 수 있을 것으로 기대한다”고 연구의의를 밝혔다.
2011.02.16
조회수 26171
-
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대.
우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다.
소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다.
그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다.
정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다.
이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다.
이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다.
한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 21623
-
가상세포 이용해 병원균 잡는 항생제 개발
교육과학기술부는 미래기반기술개발사업(시스템생물학 연구)으로 지원한 우리학교 이상엽 교수팀(전남대 이준행교수, 생명(연), 화학(연) 공동연구)이 항생제에 내성을 가진 병원균 퇴치를 위해 시스템생물학을 기반으로 한 신약발굴 방법론을 개발했다고 밝혔다.
이 교수팀은 병원균이 항생제의 오남용으로 인해 치유가 쉽지 않은 점을 감안하여 내성 병원균의 가상세포를 만들어서 이에 대한 특성을 분석하여 제어하는 방법으로 효과를 입증했다.
이번 연구의 대상은 오염된 어패류에 의해 감염되는 패혈증의 병원균인 비브리오 불니피쿠스(Vibrio vulnificus, 이하 비브리오균) 중 내성균 2개이며, 이에 대한 게놈정보와 생물정보를 토대로 가상세포를 구축하였다.
이러한 가상세포가 생존하기 위해 필요한 화학물질은 193개로 분석되었으며, 이중에서 결정적 역할을 수행하는 5개의 화학물질을 추출하였으며, 이에 관여하는 유전자를 제거함으로써 내성 비브리오균의 성장이 억제되는 효과를 증명하였다.
이 교수팀의 연구결과는 올해 1월 18일 세계적 권위의 네이처 자매지인 ‘분자시스템생물학 (Molecular Systems Biology)지’에 논문으로 게재되어 세계적으로도 연구의 우수성이 인정되었다.
이러한 시스템생물학 기법에 근거한 신약발굴 방법론은 다른 내성 병원균은 물론 다양한 인간 질병에도 적용할 수 있는 토대를 마련한 것으로 기대된다.
2011.01.19
조회수 17527
-
기능성 혈관전구세포 분화 성공
- 배아줄기세포 및 역분화줄기세포로 부터 기능성 혈관전구세포 분화 성공
- Blood誌 표지논문 게재, 줄기세포를 이용한 혈관질환의 세포치료 가능성 열어
우리학교 한용만 교수팀이 인간배아줄기세포 및 역분화줄기세포로부터 혈관전구세포로의 분화를 성공하였다.
이번 연구에서는 기존에 알려진 배아체형성이나 생쥐세포공배양 방식을 뛰어넘어, 인간배아줄기세포의 신호전달체계의 조절을 통해 혈관전구세포를 분화 유도하였다.
연구팀은 인간배아줄기세포를 분화하기 위해, 인간배아줄기세포의 자가재생산에 매우 중요한 역할을 하는 MEK/ERK 및 BMP 신호전달체계를 조절하여 혈관전구세포를 약 20%가량 분화 유도하였다.
이러한 방식으로 생산된 혈관전구세포는 체외에서 혈관계를 구성하는 혈관내피세포, 혈관평활근세포 및 조혈세포로의 분화가 이뤄졌고, 체내에서도 역시 혈관을 형성함을 누드마우스모델을 통해 확인하였다.
또한, 인간배아줄기세포 유래의 혈관전구세포는 하지허혈성질환동물에 주입하였을 때, 직접 혈관을 형성하거나 혈관형성에 관여하는 성장인자등을 분비하여, 하지허혈성질환동물의 혈류량이 증가한 반면 허혈성 부위의 괴사는 감소하였다.
이번 연구는 교육과학기술부(장관 이주호) 21세기프론티어연구개발사업인 세포응용연구사업단의 연구비 지원으로 수행되었으며, 고규영 교수(KAIST), 최철희 교수(KAIST), 정형민 교수(차의과대학교), 조이숙 박사(한국생명공학연구원) 등이 참여하였다.
연구결과는 올해 9월 美혈액학회지인 "Blood(IF:10.55)"에 표지논문으로 최종 게재되었으며, 국내특허 등록 및 해외 PCT출원을 마친 상태이다.
이 실험결과를 바탕으로, 향후 혈관질환분야에 줄기세포를 이용한 환자맞춤형 세포치료의 가능성을 열어줄 것으로 기대된다.
[그림] 신호전달체계의 조절을 통한 배아 및 역분화 줄기세포의 혈관전구세포의 분화
2010.12.27
조회수 20315
-
심장질환 원인신호전달메커니즘 규명
- 신약개발 및 심장질환 응용연구의 중요한 발판 마련
- IT와 BT를 융합한 시스템생물학 연구 통해 규명
우리학교 바이오및뇌공학과 조광현 교수팀과 생명과학과 허원도 교수팀이 시스템생물학 융합연구를 통해 심장질환 원인신호전달경로의 숨겨진 메커니즘을 규명했다.
심근비대증은 다양한 병인에 의해 심근세포가 비대해지는 병리학적 현상으로써 심부전증과 부정맥 등을 수반하는 주요 심장질환이다.
칼시뉴린-엔팻(calcineurin-NFAT) 신호전달경로는 이러한 심근비대증의 유발에 매우 중요한 역할을 하는 것으로 알려져 있다.
하지만 이 신호전달경로의 주요 조절단백질로 알려진 알캔(RCAN1)의 기능에 대해 많은 논쟁이 이어져 왔고 현재까지 그 구체적인 조절메커니즘이 밝혀지지 않았다.
조광현 교수 융합연구팀은 이러한 복잡한 현상에 대해 수학 모델링과 대규모 컴퓨터시뮬레이션, 그리고 단일세포 분자 이미징 기술을 동원한 시스템생물학 융합연구를 통해 어크(ERK)와 지에스케이(GSK3)로 구성된 스위칭 회로가 칼시뉴린-엔팻 신호전달경로를 조절한다는 것을 새롭게 규명했다.
특히 이 연구에서는 알캔이 세포내 농도가 낮을 때 칼시뉴린(calcineurin)의 기능을 저해하는 억제자로서 기능하지만, 그 농도가 증가하면 어크와 지에스케이에 의한 크로스토크를 통해 칼시뉴린 신호를 오히려 증가시키는 촉진자로서 기능 하도록 세포내 조절회로가 진화적으로 설계되어 있음을 최초로 밝혔다.
지금까지 많은 연구에서 알캔의 상반된 신호조절 역할이 보고되어 학계에서는 과연 무엇이 진실인가에 관한 논쟁이 이어졌다.
또한, 어떻게 동일한 분자가 그와 같이 서로 다른 기능을 보이는 것인지, 이를 유발하는 근본적인 메커니즘은 과연 무엇인지 등이 모두 수수께끼로 남아 있었다.
이번 연구를 통해 학계의 이러한 오랜 질문에 대한 해답이 제시됐으며, 알캔과 칼시뉴린-엔팻 신호전달경로의 근원적인 조절메커니즘이 시스템차원에서 최초로 규명됨으로써 앞으로 이를 표적으로 하는 신약개발 및 관련 심장질환 응용연구의 중요한 발판을 마련하게 되었다.
또한 기존의 실험적 접근만으로는 해결할 수 없는 복잡한 생명현상을 대상으로 IT와 BT의 융합연구인 생체시스템모델링 및 바이오시뮬레이션 연구를 통해 새로운 해결책을 찾을 수 있는 가능성을 제시하게 됐다.
이 연구는 교육과학기술부가 지원하는 한국연구재단의 기초연구실육성사업과 도약연구사업, 그리고 칼슘대사시스템생물학사업의 일환으로 수행됐으며, 연구 결과는 <저널오브셀사이언스(Journal of Cell Science)>의 표지논문으로 선정되어 2011년 1월 1일자(온라인판은 2010년 12월 13일자)에 게재된다.
2010.12.20
조회수 17547
-
유연한 나노신소재 발전기술 개발
휴대폰이나 심장에 이식한 미세 로봇이 배터리 충전 없이 영구적으로 작동할 수는 없을까?
공상과학 영화에서나 나올 법한 이런 일들이 머지않아 가능할 것으로 보인다.
우리학교 신소재공학과 이건재 교수팀은 압전특성이 우수한 세라믹 박막물질을 이용하여 심장 박동, 혈액 흐름과 같은 미세한 움직임으로도 전기를 만들 수 있는 새로운 형태의 유연한 나노발전기술을 개발했다.
압전특성이란, 가스레인지의 점화스위치 작동원리와 같이, 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 특성을 말하는 데, ‘페로브스카이트(perovskite)’ 구조를 가지는 세라믹 물질들이 높은 효율을 나타내지만 깨지기 쉬운 성질을 가지고 있어 유연한 전자 장치로의 활용이 불가능했다.
이 교수팀은 높은 압전특성을 가지면서 깨지지 않고 자유롭게 구부릴 수 있는 세라믹 나노박막물질을 만들어 바이오-환경 친화적인 고효율 나노발전기술 개발에 세계 최초로 성공한 것이다.
나노기술과 압전체가 만나 만들어지는 나노발전기술은 전선과 배터리 없이도 발전이 가능해, 휴대용 전자제품 뿐만 아니라 몸속에 집어넣는 센서나 로봇의 에너지원으로도 사용이 가능하기 때문에, 그 활용영역은 응용기술 여하에 따라 얼마든지 넓어질 수 있을 것으로 보고 있다.
미세한 바람, 진동, 소리와 같이 자연에서 발생되는 에너지원과 심장 박동, 혈액 흐름, 근육 수축·이완과 같이 사람 몸에서 발생되는 생체역학적인 힘을 통해 전기를 생산할 수 있게 됨으로써 꿈의 무공해·무한 에너지원이 될 수 있는 것이다.
이번에 개발한 나노발전기술은 이 교수가 2004년 세계 최초로 공동발명한 ‘고성능 단결정 휘어지는 전자소자’를 토대로, 세라믹 나노박막물질을 유연한 플라스틱 기판 위에 옮겨, 외적인 힘이 주어질 때마다 신소재 압전물질로부터 전기를 얻는 데 성공한 것이 핵심이다. 또한 이 나노발전기술의 회로구조를 변형하면 LED발광도 이루어 질 수 있다고 이 교수는 말했다.
이 연구 결과는 나노과학기술(NT) 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 11월호 온라인 판에 게재됐고, 국내·외에 특허 출원되었으며, 논문의 공동저자로 참여한 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수팀과 동물 이식형 나노발전기 생체실험을 후속 연구로 진행하고 있다.
<관련동영상>
외부적인 힘에 의해 나노발전기에서 전기가 발생되는 동영상
http://www.youtube.com/watch?v=sWdopmi0B7U
<그림설명>
구부러지는 유연한 나노박막물질에서 전기가 발생되고 있다.
2010.11.08
조회수 23302
-
인공 펩타이드를 이용한 3차원 자기조립 분자구조체 개발
- 조각품 같은 유기물 구조체 최초로 구현 -
유기물질로도 다양한 3차원 구조체를 합성할 수 있는 새로운 길이 열려, ‘기능성 인공단백질 개발’의 기초가 될 것으로 전망된다.
우리학교 화학과 이희승 교수팀은 분자의 자기조립 과정에서 서로 다른 세 방향(x, y, z)의 분자간 인력의 미세한 조절이 가능하도록 분자를 디자인하면, 이제까지 만들 수 없었던 다양한 모양의 3차원 유기물 구조체들을 자유자재로 합성할 수 있다는 가설을 실험적으로 구현하는데 성공했다고 28일 밝혔다.
이 연구결과는 생체적합성이 요구되는 의공학이나 재료과학에 광범위하게 응용 가능한 다양한 유기물 소자 개발에 기술적 전기가 마련된 것으로 평가받고 있으며, 미세한 분자기계 개발을 위한 빌딩 블록(building blocks)으로도 활용될 수 있다.
이 교수팀은 베타-펩타이드라는 비천연 펩타이드의 구조적 특징에서 착안한 새로운 자기조립 원리를 개발해 기존 방법으로는 불가능했던 풍차, 꽃잎, 사각막대와 같은 다양한 모양의 새로운 3차원 구조의 유기물 구조체를 합성했다.
아울러 마치 top-down 방식으로 깎아놓은 조각품과 같은 분자구조체들을 bottom-up 방식으로 자유자재로 만들어 낼 수 있는 새로운 길을 열고, 자기조립 과정을 자유자재로 조절할 수 있는 방법론을 확립해 같은 분자로부터 다양한 구조체를 합성할 수 있는 방법을 개발하는데 성공했다.
그동안 무기물 나노물질의 경우 다양한 크기와 모양의 구조를 만드는 방법들이 이미 잘 알려져 있지만, 펩타이드를 비롯한 유기물의 경우에는 자기조립체의 크기와 모양을 제어하는 일은 난제로 인식되어 왔다.
특히, 펩타이드의 경우 원형모양(구, 튜브, 원통형 막대 등)의 구조체 이외에는 만들 수가 없었다.
이 교수는 “이번 기초연구 결과를 바탕으로 기능성 인공 단백질 개발과 응용에 관한 연구를 계속 수행하고 있다”며, “분자기계를 설계하거나 자연계에서 일어나는 자기조립 현상에 대한 이해를 촉진할 수 있는 기폭제가 될 것으로 전망된다”고 말했다.
이번 연구는 한국연구재단(이사장 박찬모) 인터페이스 분자제어 연구센터(선도연구센터, 센터장 김세훈)와 일반연구자 지원사업의 공동지원을 받아 수행됐다. 또한, 연구초기에 KAIST의 고위험고수익(High Risk High Return) Project의 연구지원을 통해 연구초기 아이디어 검증이 가능했다는 점이 주목할 만하다.
한편, 화학과 이희승 교수와 권선범 박사과정 학생이 주도한 이번 연구결과는 화학분야의 세계적인 학술지인 ‘안게반테 케미(Angewante Chemie International Edition)’지 온라인 판 8월 23일자에 게재됐다.
또한, 연구의 중요성을 인정받아 표지논문 및 중요논문으로 동시에 선정됐으며, 미국화학회(American Chemical Society)에서 발간하는 ‘C&EN (Chemical & Engineering News)’지 9월 6일자에 연구결과가 소개됐고, 현재 특허출원 중이다.
2010.09.28
조회수 21065
-
가상 암세포 실험을 통한 암 전이 핵심회로 규명
- 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시 -
우리학교는 바이오 및 뇌 공학과 조광현교수 연구팀이 IT와 BT의 융합연구인 시스템생물학 연구에 기반을 둔 ‘가상 암세포’ 실험을 통해 암 전이를 유발하는 핵심 분자회로를 규명했다고 14일 밝혔다.
이번 연구를 통해 알킵(RKIP)이 매개가 되는 암 전이 조절과정과 핵심회로가 규명됐다. 이로써 향후 이를 표적으로 하는 항암제 개발 등 IT를 이용한 생명과학 응용연구의 중요한 발판을 마련하게 됐다.
특히, 융합연구를 통해 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시하게 됐다.
상피세포가 중간엽세포로 변화하는 과정은 종양세포의 전이단계에서 일어나는 매우 중요한 과정이다. 이 과정의 주요 특징 가운데 하나는 세포 간 결합을 조절하는 단백질인 이카드헤린(E-cadherin)의 양이 급격히 줄어드는 것이다.
이카드헤린의 발현량은 어크(ERK)와 윈트(Wnt)가 포함된 다양한 신호전달경로에 의해 조절되는 것으로 알려져 있다. 하지만, 이들 신호전달경로는 다중결합 피드백회로에 의해 서로 복잡하게 얽혀 있어 실험적인 방법으로는 이들의 동역학 특성과 숨겨진 조절 메커니즘을 분석하는 것이 매우 어려운 것으로 여겨져 왔다.
조광현 교수 연구팀은 이에 대한 수학모형을 개발하고 대규모 컴퓨터시뮬레이션 분석을 통해 이들 결합 피드백회로의 복잡한 상호작용으로 인해 일어날 수 있는 다양한 생명현상을 규명했다.
또한, 어크에 의한 알킵(RKIP) 인산화와 스네일(Snail)에 의한 알킵 전사억제 과정으로 구성된 결합 양성피드백 회로가 임계점 이상의 자극세기에서만 이카드헤린이 급격하게 발현되도록 조절함으로써 외부 노이즈에 강건한 스위칭 동작을 유발한다는 것을 규명했다.
아울러 알킵이 스네일과 슬러그(Slug)의 발현을 억제함으로써 이카드헤린의 발현이 증가되고, 이 때문에 전이과정이 억제될 수 있음을 보였다.
지금까지 전이를 일으키는 종양세포에서 알킵의 발현이 현저하게 감소되었다는 많은 임상적 보고가 있었지만, 그 근본적인 메커니즘은 알려져 있지 않았다.
한편, 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구사업과 기초연구실육성사업으로 수행됐으며, 연구결과는 순수 컴퓨터시뮬레이션 결과임에도 이례적으로 동물 또는 임상실험의 결과가 주로 게재되는 암 전문 학술지 ‘캔서 리서치(Cancer Research)’지 9월 1일자에 게재됐다.
<그림설명>암 전이과정을 조절하는 세포내 분자들 간의 다중결합 피드백 회로의 동역학 특성 및 조절메커니즘의 분석결과. 이 그림은 암 전이 조절회로에 대한 개념도와 시뮬레이션 분석에 사용된 방법 및 결과를 설명한 것이다.
A. 암 전이과정을 조절하는 세포내 주요 신호전달 네트워크의 예시.
B. 전자공학적 논리회로 분석기법을 이용해 암전이 조절회로를 정량적으로 모사하고 핵심 메커니즘을 분석하는 과정.C. 대규모 컴퓨터시뮬레이션 분석을 통해 알킵에 의해 매개되는 결합양성 피드백 회로가 노이즈가 주어지더라도 강건하게 이카드헤린의 스위칭 동작을 유발함을 보이는 예시.
<용어설명>
◯중간엽세포: 발생단계의 중배엽에서 기원된 결합조직세포로서 여러 다른 결합조직세포로 분화할 수 있는 능력이 있는 세포.
◯EMT: 상피세포가 중간엽세포로 변화하는 과정(Epithelial Mesenchymal Transition).
◯어크(ERK): 세포의 유사분열 신호를 전달하는 단백질의 한 종류.
◯윈트(Wnt): 세포의 유사분열 신호를 전달하는 단백질의 한 종류. 특히 배아의 발생단계에서 중요한 역할을 함.
◯이카드헤린(E-cadherin): 세포 접합에 중요한 역할을 하는 단백질의 한 종류.
◯알킵(RKIP): 유사분열 신호를 조절하는 단백질의 한 종류. 특히, 암의 전이과정에서 중요한 역할을 하는 것으로 알려져 있음.
◯스네일(Snail): 이카드헤린의 발현을 억제함으로써 암 전이 과정을 촉진시키는 역할을 하는 단백질.
◯분자회로: 세포내 유전자, 단백질 등의 분자간 상호작용을 나타낸 회로
◯상피세포: 동물의 몸 표면이나 내장기관의 내부 표면을 덮고 있는 세포
◯전이단계: 암이 다른 부위로 퍼지는 단계
◯다중결합 피드백회로: 피드백회로가 2개 이상 중첩된 구조
2010.09.14
조회수 22040