< 왼쪽부터 생명화학공학과 김현욱 교수, 정해덕 박사과정, 임진아 박사과정, 김유식 교수 >
암 치료의 큰 걸림돌 중 하나는 항암제에 대한 암세포의 내성이다. 기존에는 내성 암세포를 제거할 수 있는 새로운 표적을 찾는 방식이 주를 이뤘지만, 오히려 더 강한 내성을 유도할 수 있다는 한계가 있었다. 이에 우리 연구진이 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 자동으로 예측하는 컴퓨터 기반 방법론을 개발했다. 이 기술은 다양한 암 치료뿐 아니라 당뇨병 등 난치성 대사 질환에도 활용될 수 있어 주목된다.
우리 대학 생명화학공학과 김현욱 교수와 김유식 교수 연구팀이 인체 대사를 시뮬레이션할 수 있는 컴퓨터 모델인 대사 네트워크 모델을 활용해, 항암제에 내성을 가진 유방암 세포를 약물에 민감화시킬 수 있는 새로운 약물 표적을 예측하는 컴퓨터 기반 방법론을 개발했다고 7일 밝혔다.
연구진은 암세포의 대사 변형이 약물 내성 형성에 관여하는 주요한 특징으로 주목하고, 항암제 내성 유방암 세포의 대사를 조절해 약물 반응성을 높일 유전자 표적을 예측하는 대사 네트워크 모델 기반 방법론을 개발했다.
< 그림 1. 약물 민감화 유전자 표적을 예측한느 대사 네트워크 모델 기반 방법론 모식도 >
연구진은 먼저 독소루비신(doxorubicin)과 파클리탁셀(paclitaxel)에 각각 내성을 지닌 MCF7 유방암 세포주에서 얻은 단백체 데이터를 통합해 세포별 대사 네트워크 모델을 구축했다. 이어 모든 대사 유전자에 대해서 유전자 낙아웃(결실) 시뮬레이션*을 수행하고, 그 결과를 분석했다.
*유전자 낙아웃 시뮬레이션: 특정 유전자를 가상으로 제거한 상태에서 생물학적 네트워크의 변화를 계산적으로 예측하는 방법
그 결과, 특정 유전자의 단백질을 억제하면, 항암제에 잘 듣지 않던 내성 암세포가 다시 항암제에 반응하도록 만들 수 있다는 것을 알아냈다. 독소루비신 내성 세포에서는 GOT1 유전자를, 파클리탁셀 내성 세포에서는 GPI 유전자를 선별했으며, 두 약물 공통으로는 SLC1A5 유전자를 표적으로 선별했다.
예측하여 선별한 유전자를 실제로 억제해 본 결과, 내성 암세포가 항암제에 다시 반응하게 됨을 실험적으로 검증했다.
< external_image >
나아가 같은 항암제에 내성을 갖는 다른 종류의 유방암 세포에서도 같은 유전자를 억제했을 때 항암제에 다시 민감해지는 효과가 일관되게 나타나는 것을 확인할 수 있었다.
김유식 교수는 “세포 대사는 감염병, 퇴행성 질환 등 다양한 난치성 질환에서 중요한 역할을 한다”며, “이번에 개발된 대사 조절 스위치 예측 기술은 약물 내성 유방암 치료를 넘어, 치료제가 없는 다양한 대사 질환에도 적용될 수 있는 기반 기술이 될 것”이라고 말했다.
연구를 총괄한 김현욱 교수는 “이번 연구의 가장 큰 의의는 컴퓨터 시뮬레이션만과 최소한의 실험 데이터만으로 내성 암세포를 다시 약물에 반응하게 만들 수 있는 핵심 유전자를 정밀하게 예측할 수 있다는 점”이라며, “이 방법론은 다양한 암종과 대사 관련 난치성 질환의 새로운 치료 표적 발굴에도 폭넓게 활용될 수 있을 것”이라고 강조했다.
우리 대학 생명화학공학과 임진아 박사과정생과 정해덕 박사과정생이 공동 제1 저자로 참여한 이번 연구는 생명과학·물리·공학·사회과학 등 다양한 분야의 최고 수준 연구를 다루는 다학제 국제 학술지인 미국국립과학원회보(PNAS) 6월 25일 자 온라인에 게재됐다.
※ 논문명 : Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets
※ 저자 정보 : 임진아(한국과학기술원, 공동 제1 저자), 정해덕(한국과학기술원, 공동 제1 저자), 유한석(서울대학교병원, 교신저자), 김유식(한국과학기술원, 교신저자), 김현욱(한국과학기술원, 교신저자) 포함 총 10명
※ DOI: https://doi.org/10.1073/pnas.2425384122
이번 연구는 과학기술정보통신부 한국전자통신연구원 및 한국연구재단의 지원을 받아 수행됐다.
우리 몸의 면역세포인 T세포를 활성화시켜 암세포를 제거하도록 유도하는 첨단 치료법인 ‘면역항암제’는 가장 치명적인 뇌종양 ‘교모세포종(Glioblastoma)’에는 거의 반응하지 않고, 치료에 대한 저항성이 높아 단독 치료로는 효과가 매우 제한적이라는 한계가 있었다. 이에 우리 연구진이 장내 미생물과 그 대사산물을 활용해 뇌종양의 면역치료 효과를 높일 수 있는 새로운 치료 전략을 세계 최초로 입증했다. 향후 미생물을 기반으로 한 면역치료 보완제 개발에 대한 가능성도 보여줬다. 우리 대학 생명과학과 이흥규 교수 연구팀이 장내 미생물 생태계 변화에 주목해 교모세포종 면역치료의 효율을 크게 높이는 방법을 발굴하고 이를 입증했다고 1일 밝혔다. 연구팀은 교모세포종이 진행되면서 장내에서 중요한 아미노산인 ‘트립토판(tryptophan)’의 농도가 급격히 줄어들고, 이로 인해 장내 미생물 생태계가 변화한다는 점에 주목했
2025-07-01면역항암제는 암세포를 제거하는 T세포의 항암 면역작용을 강화하는 가장 주목받는 항암치료 요법이다. 하지만 난치성 뇌종양인 교모세포종의 경우 면역관문억제제를 활용한 수차례 임상시험에서 그 효과를 확인할 수 없었다. 우리 연구진이 난치성 암종에서 T세포가 만성적 항원에 노출되어 기능이 상실되거나 약화된 원인을 분석하여 T세포 활성 제어 인자를 발굴하고 치료 효능 증진 원리를 규명했다. 우리 대학 생명과학과 이흥규 교수 연구팀이 한국화학연구원(원장 이영국) 감염병예방진단기술연구센터와 협력하여, 교모세포종 실험 쥐 모델에서 억제성 Fc 감마수용체(FcγRIIB)의 결손을 통한 면역관문억제제의 세포독성 T세포 불응성을 회복해, 항암 작용 증대를 유도함으로 생존율 개선 효능을 확인했다고 6일 밝혔다. 연구팀은 최근 세포독성 T세포에서 발견된 억제 수용체(FcγRIIB)가 종양 침윤 세포독성 T세포의 특성과 면역관문억제제(항 PD-1)의 치료 효능에 미치는 영향을
2024-11-06실제 인체에 항암제가 투여되면 약물 분자는 혈류를 따라 수송된다. 이 약물 분자들은 혈관 벽을 투과하고 확산한다. 확산한 분자는 종양 덩어리 내부까지 점차 침투해 약물 효능이 나타나게 된다. 우리 연구진이 바이오프린팅 기술로 36가지의 종양 미세환경을 유체채널 내부에 모사하여 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는데 성공하여 화제다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 기존 바이오프린팅* 및 랩온어칩** 기술의 한계점을 극복하고 장점을 극대화하여 복잡한 종양 미세환경이 구현된 랩온어칩을 개발하여 여러 분석 변수가 반영된 약물 스크리닝을 수행하는 데 성공했다고 16일 밝혔다. * 바이오프린팅(bioprinting): 세포와 생체재료로 구성된 바이오 잉크를 활용하여 생체조직 및 기관과 유사한 기능적 구조물을 제작하는 3D 프린팅 기술 ** 랩온어칩(lab-on-a-chip): “칩 위의 실험실”이란 개념을 갖고 있으며 각종
2024-07-16면역항암치료는 환자의 면역 시스템을 활성화해 암을 치료하는 혁신적인 3세대 항암 치료 방법으로 알려져 있다. 하지만 면역항암 치료제는 면역활성화에 의해 기존 항암제와는 구분되는 자가면역질환과 유사한 부작용을 유발할 수 있다는 새로운 문제가 제기됐다. 이러한 부작용은 심각한 경우 환자를 죽음에까지 이르게 할 수 있기에 부작용에 대한 연구가 절실한 상황에 놓여있다. 우리 대학 바이오및뇌공학과 최정균 교수팀과 서울아산병원 종양내과 박숙련 교수팀은 면역항암제 치료를 받은 고형암 환자에 대한 대규모 전향적 코호트를 구축하고, 다차원적 분석을 통해 면역항암제 부작용의 위험요인을 규명했다고 22일 밝혔다. 또한 인공지능 딥러닝을 이용해 치료 전 환자에게서 부작용이 나타날지를 예측할 수 있는 모델까지도 개발했다고 알렸다. 기존의 관련 연구들은 소규모로 진행이 되거나, 적은 수의 지표로 국한된 범위에 대해서만 행해졌다. 또한 수행된 연구들은 면역 관련 부작용을 위해 디자인된 연구 설계가
2023-06-22우리 대학 신소재공학과 장재범 교수, 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 5배 이상 더 많은 단백질 바이오마커를 동시에 탐지할 수 있는 멀티 마커 동시 탐지 기술 개발을 했다고 23일 밝혔다. 바이오마커란, 단백질이나 DNA, RNA, 대사 물질 등의 생체 분자로써 이를 통해 몸 안의 변화를 알아낼 수 있어 암을 비롯해 뇌졸중, 치매 등 각종 난치병을 정밀하게 진단하는 표지자로 각광받고 있다. 최근 환자별로 암 조직 내부에 발현되는 단백질 마커가 서로 다르다는 사실이 밝혀지고 있으며, 이러한 차이에 따라서 암의 예후 및 항암제 반응성 등이 결정된다는 연구 결과가 발표되고 있다. 이에 따라서 암 조직에서 여러 단백질 마커를 동시에 탐지하는 기술이 반드시 요구된다. 이에 장 교수 연구팀은 기존 기술 대비 5배 이상 더 많은 수의 단백질 마커를 동시에 관찰할 수 있는 기술을 개발했다. 이 기술은 특수한 시약이나 고가의 장비가 필요하지 않아 암의 정확한 진단
2022-05-23