-
미생물 이용한 플라스틱 환경오염 문제 해결 다가가
여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다.
우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다.
*방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자
이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, PhLA) 생합성 회로의 대사 흐름을 강화하고 대사 회로를 조작해 세포 내부에 축적된 고분자의 분율을 높였으며, 컴퓨터 시뮬레이션을 이용해 PHA 합성 효소의 구조를 예측하고 구조와 기능의 상관관계를 바탕으로 효소를 개량했다.
연구팀은 이후 발효 최적화를 통해 세계 최고 농도(12.3±0.1 g/L)로 폴리(PhLA)를 고효율로 생산하고 30L 규모의 유가식 발효로 성공적으로 폴리에스터를 생산해 산업화 수준 생산의 가능성도 보였다. 생산된 방향족 폴리에스터들은 추후 약물 전달체로서의 가능성과 더불어 향상된 열적 물성, 상업화되고 개선된 기계적 물성을 보여주었다.
연구팀은 비천연 PHA 생산에서 외래 파신(phasin) 단백질*이 경제성, 효율성과 직결되는 세포 내 고분자 축적분율 증가에 중요한 역할을 한다는 것을 입증하고 PHA 합성 효소를 합리적 효소 설계 방법으로 개량했다. 효소의 삼차원 입체 구조를 호몰로지 모델링(비슷한 단백질의 구조를 바탕으로 새로운 단백질의 삼차원 입체 구조를 예측하는 방법)을 통해 예측하고, 이를 분자 도킹 시뮬레이션(단량체가 효소에 잘 결합할 수 있는지 예측하는 시뮬레이션)과 분자 동역학 시뮬레이션(분자들이 시간에 따라 어떻게 움직이고 상호작용하는지 예측하는 시뮬레이션)을 이용해 단량체의 중합 효율이 향상된 변이 효소로 개량했다.
*외래 파신 단백질: 파신은 PHA 생산과 관련된 단백질로 작은 입자(granule) 형태의 PHA 표면에서 세포질 환경과 상호작용하며 고분자 축적, granule 수 및 크기 조절 등에 관여한다. 본 연구에서는 다양한 천연 PHA 생산 미생물로부터 유래된 파신 단백질 암호화 유전자를 선별해 도입하였다.
이번 논문의 공동 제1 저자인 이영준 박사는 “친환경적인 원료와 방법으로 미생물 기반의 방향족 폴리에스터를 세계 최고 농도로 생산했다는 점에 의의가 있다”며 “이 기술이 플라스틱으로 인한 환경 오염 문제 해결에 중요한 역할을 할 것으로 기대된다”고 밝혔다. 또한 이상엽 특훈교수는 “시스템 대사공학을 이용해 유용한 고분자를 고효율로 생산하기 위해 다양한 전략을 제시한 이번 연구가 기후 변화 문제와 특히 최근 플라스틱 문제의 해결에 크게 기여할 수 있을 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 셀(Cell) 誌가 발행하는 `생물공학 동향(Trends in Biotechnology)'에 8월 21일에 게재됐다.
※ 논문명 : Microbial production of an aromatic homopolyester
※ 저자 정보 : 이영준(한국과학기술원, 공동 제1 저자), 강민주 (한국과학기술원, 공동 제1 저자), 장우대(한국과학기술원, 제2 저자), 최소영(한국과학기술원, 제3 저자), 양정은(한국과학기술원, 제4 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 6명
한편 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제 책임자 KAIST 이상엽 특훈교수)와 ‘미생물 세포공장 기반 신규 방향족 바이오플라스틱의 원스텝-원팟 생산 원천기술 개발 과제 (과제 책임자 이화여대 박시재 교수)’의 지원을 받아 수행됐다.
2024.08.26
조회수 12495
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 6973
-
누구나 천연물 합성 경로 예측 가능하다
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다.
우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다.
천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다.
식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다.
연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다.
김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다.
생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis).
한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.
2024.08.14
조회수 6972
-
틈새로 빠져나가는 소음까지 잡는다
소리는 작은 구멍이나 틈새만으로도 잘 빠져나가는 특징이 있다. 이러한 틈새를 통해 빠져나오는 소리는 보다 넓은 공간까지 잘 전파되며, 틈새를 전혀 막지 않으면서 외부 소리가 안에서 들리지 않게 하거나 내부 소리가 바깥에서 들리지 않도록 하는 것은 음향학적으로도 매우 도전적인 문제다.
우리 연구진이 다양한 산업 현장의 소음 문제 해결에 새로운 솔루션이 될 뿐 아니라 최근 가속화되고 있는 미래 기술인 항공 택시, 드론과 같은 도심 항공 모빌리티 등에서 발생하는 소음을 효과적으로 저감할 수 있는 획기적 기술을 개발했다.
우리 대학 기계공학과 전원주 교수 연구팀이 구조물의 틈새나 개구부를 통한 열 교환과 공기의 흐름은 자유롭게 허용하면서도 소음은 효과적으로 차단하기 위해, 음향 임피던스를 원하는 복소수 값으로 조절할 수 있는 신개념 음향 메타물질인 ‘복소 임피던스 타일’을 개발했다고 6일 밝혔다.
음향 임피던스란 소리가 전파되는 매질(예: 공기, 물)이 가진 고유의 음향학적 특성으로, 일반적으로 매질의 밀도와 음속의 곱셈으로 표현되기 때문에 그 값이 실수이며 매질이 정해지면 원하는 값으로 자유롭게 조절하는 것이 불가능하다.
하지만, 연구팀이 개발한 복소 임피던스 타일은 소리가 경계면에 부딪혀서 반사될 때 반사되는 소리의 크기뿐만 아니라 방향까지도 조절하는 것이 가능해지게 한다. 이는 구조물 벽면에서 소리를 흡수만 하는 기존 기술과는 달리, 소리의 크기와 방향을 적절하게 조절해 소리가 틈새로 거의 빠져나가지 않고 구조물 내에서 가둬진 채 줄어들도록 한다.
연구팀은 복소 임피던스 타일을 적용해 밖으로 빠져나가는 소리를 90% 이상 저감할 수 있음을 정밀한 전산 시뮬레이션을 통해 예측한 후, 제작과 실험을 통해 소음 저감 성능을 검증하는 데 성공했다. 심지어, 구조물 내벽에서 소리를 100% 완벽하게 흡수하는 경우보다도 복소 임피던스 타일을 사용했을 때 밖으로 빠져나가는 소리를 훨씬 더 큰 폭으로 저감할 수 있음을 확인했다.
전원주 교수는 “복소 임피던스 타일은 개구부나 틈새를 전혀 막지 않으면서도 소리는 밖으로 빠져나가지 못하게 할 수 있으며, 얇은 두께를 갖기 때문에 상대적으로 협소한 공간을 갖는 시스템에도 적용이 가능하다는 특징이 있다. 특히, 재료가 아닌 구조의 형상적인 특징을 이용하기 때문에 습도나 온도 변화에 따른 유지 보수가 쉬울뿐더러 제작도 용이하다는 장점을 가지고 있어 전자제품(헤어드라이기, 청소기 등)부터 향후 미래 교통수단으로 각광받는 도심 항공 모빌리티까지 다양한 시스템의 소음 저감에 새로운 솔루션으로 활용이 가능하다”고 말했다.
해당 연구 결과는 기계공학과 박사과정 양은진 학생과 김지완 학생이 공동 제1 저자로 참여했으며, 기계공학 분야의 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 7.9, JCR 5/180(2.5%))'에 지난 3월 1일 게재됐다. (논문명: Complex-valued impedance tiles to reduce noise emanating through openings in mechanical systems)
한편, 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 도약연구사업의 지원을 받아 수행됐다.
2024.08.06
조회수 6734
-
로봇 등 온디바이스 인공지능 실현 가능
자율주행차, 로봇 등 온디바이스 자율 시스템 환경에서 클라우드의 원격 컴퓨팅 자원 없이 기기 자체에 내장된 인공지능 칩을 활용한 온디바이스 자원만으로 적응형 AI를 실현하는 기술이 개발됐다.
우리 대학 전산학부 박종세 교수 연구팀이 지난 6월 29일부터 7월 3일까지 아르헨티나 부에노스아이레스에서 열린 ‘2024 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2024)’에서 최우수 연구 기록물상(Distinguished Artifact Award)을 수상했다고 1일 밝혔다.
* 논문명: 자율 시스템의 비디오 분석을 위한 연속학습 가속화 기법(DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics)
국제 컴퓨터 구조 심포지움(ISCA)은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회로 올해는 423편의 논문이 제출됐으며 그중 83편 만이 채택됐다. (채택률 19.6%). 최우수 연구 기록물 상은 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 연구 기록물의 혁신성, 활용 가능성, 영향력을 고려해 선정된다.
이번 수상 연구는 적응형 AI의 기반 기술인 ‘연속 학습’ 가속을 위한 NPU(신경망처리장치) 구조 및 온디바이스 소프트웨어 시스템을 최초 개발한 점, 향후 온디바이스 AI 시스템 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드, 데이터 등의 완성도 측면에서 높은 평가를 받았다.
연구 결과는 소프트웨어 중심 자동차(SDV; Software-Defined Vehicles), 소프트웨어 중심 로봇(SDR; Software-Defined Robots)으로 대표되는 미래 모빌리티 환경에서 온디바이스 AI 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.
상을 받은 전산학부 박종세 교수는 “이번 연구를 통해 온디바이스 자원만으로 적응형 AI를 실현할 수 있다는 것을 입증하게 되어 매우 기쁘고 이 성과는 학생들의 헌신적인 노력과 구글 및 메타 연구자들과의 긴밀한 협력 덕분이다”라며, “앞으로도 온디바이스 AI를 위한 하드웨어와 소프트웨어 연구를 지속해 나갈 것이다”라고 소감을 전했다.
이번 연구는 우리 대학 전산학부 김윤성, 오창훈, 황진우, 김원웅, 오성룡, 이유빈 학생들과 메타(Meta)의 하딕 샤르마(Hardik Sharma) 박사, 구글 딥마인드(Google Deepmind)의 아미르 야즈단바크시(Amir Yazdanbakhsh) 박사, 전산학부 박종세 교수가 참여했다.
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 대학ICT연구센터(ITRC), 인공지능대학원지원사업, 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2024.08.01
조회수 7719
-
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다.
우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up
※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명
최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다.
그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다.
이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다.
첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다.
둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다.
셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다.
이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 7191
-
미생물로 계란을 만든다고?
우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다.
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다.
연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다.
현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나, 계란의 온전한 영양을 제공하는 동시에 젤화, 거품 형성 등 난액(卵液)이 요리 재료로서 지니는 중요한 핵심 기능적 특성을 함께 구현하는 대체제는 개발되지 못했다. 이러한 배경에서, 연구진은 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 미생물 바이오매스를 난액 대체제로 개발하고자 했다.
특히, 인류의 오랜 섭취 경험을 통해 효모, 고초균, 유산균 및 기타 프로바이오틱스 균주 등 다양한 미생물들의 안정성이 검증됐고, 미생물 바이오매스는 생산 시 발생하는 이산화탄소뿐만 아니라 물, 토지 등 요구되는 자원이 적으면서도 고품질의 영양성분을 가지고 있기에, 연구진은 미생물 바이오매스를 대체 난액으로 활용하는 기술을 개발할 수 있다면 지속 가능한 미래 식량자원의 확보에 기여할 수 있을 것으로 기대했다.
하지만 미생물 배양을 통해 회수한 반고체 상태의 미생물 바이오매스를 가열하면 난액과 달리 액상으로 변하는 것이 관찰됐다. 이에 연구진은 계란찜을 만들기 위해선 먼저 계란의 껍데기[난각(卵殼)]를 깨트리고 난액을 모아야 한다는 사실에 착안해 미생물의 세포 구조 중 난각에 상응하는 세포벽과 세포막을 파쇄해 미생물 용해물을 제조했고, 이를 가열할 경우 난액처럼 단백질이 응고돼 젤 형태로 변하는 것을 확인했다.
이상엽 특훈교수는 “영양 측면에서도 우수한 성분들을 갖추고 있어 평소 식량에도 사용될 수 있지만, 특히 미래 장거리 우주여행 식량, 전시 상황 등 긴급 상황 시의 대비를 위한 비상식량 등으로도 활용할 수 있으며, 무엇보다 지속 가능한 식량 체계 확보에 도움이 된다”고 말했다.
이번 논문은 네이처(Nature) 誌가 발행하는 'npj 식품 과학(npj Science of Food)'에 6월 19일자 온라인 게재됐다.
※ 논문명 : Microbial lysates repurposed as liquid egg substitutes
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 안다희(한국과학기술원, 제2 저자), 정석영(한국과학기술원, 제3 저자), 이유현(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명
이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 의 지원을 받아 수행됐다.
2024.07.04
조회수 7670
-
맞춤형 종양 모델 구축 스페로이드 플랫폼 개발
세포들이 뭉쳐 생성된 구형 집합체인 스페로이드(spheroid)의 제작 기술은 현재 단일 조건의 스페로이드를 대규모로 생성하는 것까지는 가능하나, 체내 조직의 기능을 모사할 수 있는 최적의 크기 및 세포 조성 범위의 탐색이 어렵고, 다중 약물 스크리닝에 적합하지 않다는 문제가 있었다. 우리 연구진이 단 3번의 세포 주입으로 10가지 세포 조성을 갖는 100개의 스페로이드를 제작하고, 25가지 약물 조합을 동시에 처리할 수 있는 플랫폼을 구축하는 데 성공했다.
우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 다양한 스페로이드 어레이(배열)를 맞춤형으로 손쉽게 제작하고 이를 구획화해 다중 시약 처리를 수행할 수 있는 조립형 마이크로어레이 플랫폼을 개발했다고 27일 밝혔다.
기존 단일 조건의 스페로이드를 대규모로 제작하는 방법은 다중 약물 스크리닝이 어렵고, 다중 약물 스크리닝이 가능한 방법은 대규모 제작이 어려워, 두 가지 장점을 동시에 만족하는 플랫폼이 개발되지 않은 실정이었다.
* 다중 약물 스크리닝: 암 치료의 식별 및 약물 안전성 평가를 위해 약물의 종류, 농도 등 다양한 실험 조건 변화에 따른 세포 및 조직의 반응을 평가하는 방법
연구팀은 조립식 플랫폼의 핵심기술인 행잉드롭 마이크로어레이*, 그래디언트(gradient) 블록**, 오목 기둥 마이크로어레이***를 개발하고, 이들의 조립 방식에 따라 달라지는 여러 가지 스페로이드 어레이 기반 종양 모델의 제작 방법과 분석 방법을 발표했다.
* 행잉드롭 마이크로어레이: 고드름과 같이 표면에 매달린 형태의 물방울을 의미하는 행잉드롭 내에 세포가 존재하면 중력에 의해 세포들이 응집되어 스페로이드가 만들어짐. 행잉드롭 마이크로어레이는 바닥 면에 구멍이 2차원으로 배열되어, 단 한 번의 세포 혼합용액 주입으로 행잉드롭을 어레이 형태로 형성할 수 있어, 균일한 스페로이드 어레이를 제작할 수 있음
** 그래디언트 블록: 경사면을 가지는 블록으로, 행잉드롭 마이크로어레이와 조립하게 되면 각각의 어레이 구멍에 가라앉는 세포의 수가 선형으로 변화하게 되어 이를 통해 크기가 규칙적으로 변화하는 스페로이드 어레이를 제작할 수 있음
***오목 기둥 마이크로어레이: 행잉드롭과 접촉하여 스페로이드를 기둥 상부에 안착시켜 회수할 수 있는 구조를 갖고 있어, 스페로이드 어레이를 개별적으로 분리하고 이동시킬 수 있음
연구팀은 10가지의 다른 세포 조성을 가지며, 조성 별로 10개의 스페로이드가 존재하는, 총 100개의 삼중 배양 스페로이드로 구성된 어레이를 단 세 번의 세포 혼합용액 주입으로 생성시키는데 성공했다.
또한 연구팀은 행잉드롭 마이크로어레이와 오목 기둥 마이크로어레이의 조립을 통해 대규모로 생성된 스페로이드를 작은물방울 형태로 각각 분리하고, 구획화된 행잉드롭 마이크로어레이로 옮겨 스페로이드 어레이를 구획화시키는 방법을 새롭게 선보였다. 이를 통해 스페로이드 어레이의 순차적 다중 시약 처리 및 일괄적 형광 염색이 가능하게 되어 스페로이드 분석 및 실험 과정이 획기적으로 개선됐다.
연구를 주도한 박제균 교수는 “이번 연구는 다양한 크기와 조성을 갖는 스페로이드 어레이를 대규모로 제작하고, 원하는 대로 이동시켜 일괄 또는 다중 시약 처리가 가능한 고효율 스크리닝 플랫폼의 개발 성과”임을 강조하며, “간단하면서도 우수한 편의성을 갖춘 플랫폼이기에, 향후 다른 연구자들도 스페로이드 및 오가노이드의 크기와 조성에 따른 변화 연구와 다양한 세포 조성으로 이루어진 복잡한 스페로이드, 오가노이드 어레이를 이용한 고효율 약물 스크리닝 등에 활용할 수 있을 것”이라고 말했다.
우리 대학 바이오및뇌공학과 김휘수 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)’에 2024년 5월 30일 자로 온라인판에 게재됐다.(https://doi.org/10.1002/adhm.202400501. 논문명: Reconfigurable Hanging Drop Microarray Platform for On-demand Preparation and Analysis of Spheroid Array) 또한 상기 논문은 와일리-VCH(Wiley-VCH) 출판사의 “핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)” 세션에도 선정됐다.
한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.06.27
조회수 6801
-
챗MOF로 96.9% 금속 유기 골격체 물성 예측하다
우리 대학 연구진이 챗GPT를 활용해 큰 다공성, 높은 표면적, 그리고 뛰어난 조절 가능성으로 많은 화학 응용 분야에서 사용되는 금속 유기 골격체의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(이하 챗MOF)을 개발했다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보여 화제다.
생명화학공학과 김지한 교수 연구팀이 인공지능(AI)의 급격한 발전에 주목하며, 대규모 언어 모델(이하 LLMs) 활용을 통해 금속 유기 골격체(Metal-Organic Frameworks, MOFs)의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(ChatMOF)을 개발했다고 26일 발표했다.
최근 인공지능(AI)의 발전에는 큰 도약이 있었지만 재료 과학에서의 LLM의 잠재력을 완전히 실현하기에는 여전히 물질의 복잡성과 재료별 특화된 훈련 데이터의 부족이라는 한계점이 존재했다.
김지한 교수 연구팀이 개발한 챗MOF는 재료 분야에서 전통적인 머신러닝 모델과 LLM을 결합한 혁신적인 접근 방식으로 계산 및 머신러닝 도구에 대한 초보자들과의 격차를 상당히 줄일 수 있는 잠재력을 가지고 있다.
또한 이 독특한 시스템은 인공지능의 변혁적인 능력과 재료 과학의 복잡한 측면들을 연결하며, 다양한 작업에서 뛰어난 성능을 보여준다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보고한다. 한편, 더 복잡한 구조 생성 작업은 그 복잡함에도 불구하고 주목할 만한 87.5%의 정확도를 달성한다. 이러한 유망한 결과는 챗MOF가 가장 요구가 많은 작업을 관리하는 데도 효과적임을 강조한다.
김지한 교수는 “연구팀이 개발한 기술은 재료 과학 분야에서 인공지능의 더 높은 자율성을 달성하기 위한 중요한 진전을 나타낸다. 기술이 발전함에 따라, 모델 용량과 온라인 플랫폼에서의 데이터 공유에 대한 체계적인 개선을 통해 챗MOF의 성능을 더욱 최적화할 수 있으며, 이는 금속 유기 골격체 연구 분야에서 놀라운 진전을 촉진할 수 있다.”라고 말했다.
생명화학공학과 강영훈 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)'에 지난 6월 3일 게재됐다. (논문명: ChatMOF: An Artificial Intelligence System for Predicting and Generating Metal-Organic Frameworks Using Large Language Models)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2024.06.26
조회수 8685
-
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다.
우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다.
금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다.
김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다.
연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다.
*인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함
**비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소
***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나
***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리
이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다.
신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing)
한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 7555
-
화학과 학부생, 항암치료 앞당길 천연물 합성 연구 1저자
국내 자생 약용식물인 ‘광대싸리’에서 추출된 세큐린진 G는 항암제, 퇴행성 신경질환 치료제 및 마약중독 치료제로 개발 가능한 중요한 세큐리네가 천연물군에 속해 있다. 우리 대학 화학과 학부생이 추진한 연구를 통해 세계 최초로 세큐린진 G의 천연물 전합성*에 성공해 화제다.
*천연물 전합성(Total Synthesis): 쉽게 구할 수 있는 시작 물질로부터 여러 단계의 화학반응을 통해 자연에 존재하는 천연물을 실험실에서 합성하는 연구 분야로 각 단계의 화학반응이 모두 성공적으로 이루어져야 목표 분자를 최종적으로 합성할 수 있어 연구 호흡이 길고 난이도가 높다.
우리 대학은 화학과에 재학 중인 윤태식 학부생이 제1 저자로 참여하고(연구 지도교수: 한순규 교수) 대학원생 멘토인 김태완 대학원생이 공동 저자로 참여한 세큐린진(Securingine) G 전합성 논문이 국제 학술지에 게재됐다고 7일 밝혔다.
한순규 교수 연구팀의 윤태식 학사과정 학생이 주저자로 참여한 논문은 영국 왕립화학회(Royal Society of Chemistry)에서 발간하는 국제 화학학술지‘케미칼 커뮤니케이션즈(Chemical Communications)’에 5월 23일에 실렸다. (논문명: Total Synthesis of (–)-Securingine G)
간단한 화합물에서는 잘 진행되는 반응도 복잡한 구조의 천연물에 도달하는 과정의 전구체에서는 잘 진행되지 않는 경우가 많아 천연물 합성 연구는 고도의 창의력과 화학적 문제해결 능력이 필요하다. 그렇기에 학부생이 주도적으로 천연물 전합성 연구를 진행하는 것은 쉽지 않다.
이번에 세계 최초로 전합성에 성공한 천연물 세큐린진 G는 세큐리네가 천연물군 중 유일하게 피리딘 헤테로고리를 포함하는 물질이다. 피리딘 헤테로고리는 신약 개발에 있어 아주 중요한 역할을 한다. 실제로 지난 2023년 세계적으로 가장 많이 팔린 저분자 약 200종을 조사한 결과 그 중 20%인 40개가 피리딘 헤테로고리를 포함할 정도로 피리딘 골격은 의약적으로 중요하다.
세큐린진 G 합성에 있어 핵심은 어떻게 메니스다우릴라이드*와 피리딘 헤테로고리 사이의 탄소-탄소 결합을 입체 선택적으로 연결하는지였다. 기존에 염기성이 높아 원하는 결합은 이루어지지 않은 점을 착안하여 연구진은 새로운 희토류** 기반 교환 시약을 개발해 염기성 조건에서 문제가 된 부반응을 억제하고 핵심이 되는 탄소-탄소 결합을 성공적으로 형성했다.
*메니스다우릴라이드: 광대싸리나무에서 세큐리네가 천연물을 생합성하는데 쓰이는 핵심 전구체
**희토류(rare earth element): 란타넘족(lanthanide) 원소와 스칸듐(scandium), 이트리움(yttrium)을 포함한 17개의 원소군으로 이차전지, 석유화학 촉매, 반도체용 연마제, 레이저등에 필수적으로 들어가는 대체불가한 화학물질
우리 대학은 학부생들에게 실질적인 실험 및 연구 경험을 쌓을 수 있는 기회를 제공하기 위해 학부생 연구프로그램(URP, Undergraduate Research Program)을 운영하고 있다. URP 프로그램은 연구계획서 작성부터 성과 발표/평가에 이르기까지 전 과정을 통하여 연구수행 역량을 개발할 수 있도록 하는 프로그램이다. 학교는 소정의 연구비 지원 및 학점 연계를 통해 학부생을 지원한다.
화학과 한순규 교수는 “연구 중심 대학을 지향하는 KAIST에서 URP 프로그램은 학부생이 지도교수와 조교의 지도하에 실질적인 연구를 체계적으로 수행해 볼 수 있는 중요한 기회를 제공한다”라며 “이를 통해 첨단 연구와 학부 교육이라는 두 마리 토끼를 모두 잡을 수 있었다”고 밝혔다.
한편 이번 연구는 KAIST URP 프로그램과 한국연구재단의 지원을 받아 수행됐다.
2024.06.07
조회수 9758
-
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다.
조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다.
연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다.
연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다.
특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다.
이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다.
조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다.
바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations)
논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6
한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2024.06.03
조회수 8176