< 사진 1. KAIST 뇌인지과학과 최민이 교수 >
파킨슨병 같은 만성 퇴행성 뇌 질환의 경우, 생존 환자의 뇌세포에 직접 접근이 제한적이기 때문에, 뇌 질환 환자의 세포 데이터를 토대로 환자 질병의 메커니즘 하위 유형을 인공지능으로 예측하는 것은 시도된 바가 없다.
우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 프랜시스 크릭 연구소(Francis Crick Institute)와의 공동 연구로 파킨슨병 환자의 개인별 질병 하위 유형을 예측하는 인공지능 기반의 플랫폼을 개발했다고 15일 밝혔다.
최민이 교수 연구팀이 개발한 플랫폼은 파킨슨병 환자의 역분화 만능 줄기세포(hiPSC)에서 분화된 신경 세포의 핵, 미토콘드리아, 리보솜 이미지 정보만 학습해 파킨슨 환자의 병리적 하위 유형을 정확하게 예측한다.
이 기술을 활용하면 환자별로 다르게 나타나는 파킨슨병 양상을 겉으로 보이는 발현형이 아닌 생물학적 메커니즘별로 분류할 수 있다. 이를 통해 원인 미상의 파킨슨병 환자가 속한 분자 세포적 하위 유형별로 진단이 가능해져 환자 맞춤형 치료의 길을 열 수 있다. 또 이 플랫폼은 고속의 대량 스크리닝 시스템을 사용하기 때문에 병리적 하위 유형에 적합한 맞춤형 약물 개발 파이프라인으로도 활용될 수 있다.
< 그림 1. 건강한 기증자와 파킨슨병 환자로부터 얻은 섬유아세포는 줄기세포로 역분화된 후, 일련의 과정을 거쳐 신경세포로 분화됨 >
지금까지 파킨슨병의 치료는 환자 개별의 병리 상태를 고려하지 않고 확률에 기댄 ‘일률적 접근’ 방식을 사용해 왔다. 이러한 접근 방식은 병리적 원인과 치료 방법 사이의 불일치로 인해 치료 효과를 향상하기 어려웠다.
최민이 교수 연구팀이 개발한 플랫폼을 사용하면 개별 환자 뇌세포의 분자 및 세포 정보를 정밀하게 프로파일링할 수 있다. 이를 토대로 환자들의 질병 하위 유형을 정확히 진단할 수 있어서 궁극적으로 ‘정밀 의학 (Precise medicine)’이 가능해진다. 이는 각 개인에게 맞춤화된 치료 (Personalized medicine)로 이어져 치료 효과를 크게 향상할 수 있을 것으로 기대된다.
이 플랫폼은 2012년 노벨의학상 수상 기술인 유도만능줄기세포(iPSC: 성인 피부세포나 혈액에서 얻은 체세포를 태아기의 미분화 상태로 리프로그래밍한 세포. 어떤 장기 세포로도 분화가 가능)를 분화시켜 얻은 뇌세포를 사용하는 ‘접시 속 질병(disease in a dish)’ 패러다임이다. 이는 퇴행성 뇌 질환처럼 병변을 직접 얻을 수 없거나, 인간의 뇌를 정확하게 모사할 수 없는 동물 모델의 한계점을 극복할 수 있는 기술 중 하나로 주목받고 있다. 특히, 접시 속에 배양한 자신의 표적 질병 세포를 순차적으로 이미징하면 일련의 병리적 사건을 추적할 수 있어 질병 진행에 따른 약물 반응 결과를 예측할 수 있다는 이점이 있다.
< 그림 2 a. 고속-대용량 이미징 시스템을 통해 촬영된 환자 역분화 만능 줄기세포 유도 신경 세포의 예 (핵: 파란색, 미토콘드리아: 빨간색, 리보좀: 초록색). 전체 사진을 8 X 8 로 슬라이스 한 후 각각의 조각 이미지. b. 예측 결과를 보여주는 오차 행렬 (Confusion Matrix) >
교신 저자인 최민이 교수는 "이번 연구는 실험실에서 얻은 생물학적 데이터를 인공지능에 효과적으로 학습시켜, 정확도가 높은 질병 하위 유형 분류 모델을 생성하는 방법을 구체적으로 소개했다”며, "이 플랫폼은 자폐 스펙트럼과 같이 환자 개인별 증상이 뚜렷하게 다른 뇌 질환의 하위 유형을 분류하는 데에도 유용할 것이며, 이를 통해 효과적인 치료법 개발도 가능해질 것이다”라고 연구의 의의를 설명했다.
< 그림 3. 인공지능 기반의 파킨슨 하위 유형 예측 플랫폼: 데이터를 학습한 머신러닝 기반 클래시파이어 (Classifer)는 (1) 모집단을 파킨슨 그룹과 건강한 그룹으로 나누고, 파킨슨 그룹 환자 개개인을 기전적 하위 유형에 따라 추가적으로 분류해 (2) 파킨슨병 환자들의 고유한 질병 하위 유형에 맞는 기전 특이적 효능 약물들을 매칭시킴으로써 파킨슨병 치료 효과를 개선할 수 있음 >
이번 논문은 영국 Medical Research Council (MRC)와 대교-KAIST 인지 향상 연구센터의 지원으로 수행됐으며, 국제 학술지 ‘네이처 머신 인텔리젼스 (Nature Machine Intelligence, IF = 25.8) 8월호에 출판됐다 (논문명: Prediction of mechanistic subtypes of Parkinson’s using patient-derived stem cell model)
기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10우리 대학은 삼성리서치 김태수 상무가 이끄는 전기및전자공학부 윤인수 교수 연구팀이 POSTECH, 조지아공과대학교(Georgia Tech) 연구진과 함께 구성한 연합팀 ‘팀 애틀랜타(Team Atlanta)’가 8월 8일(현지 시각) 미국 라스베이거스에서 열린 세계 최대 해킹 콘퍼런스‘DEF CON 33’에서, 미국 국방고등연구계획국(DARPA) 주관‘AI 사이버 챌린지(AIxCC)’에서 최종 우승을 차지했다고 9일 밝혔다. 이번 성과로 팀은 미화 400만 달러(약 55억 원)의 상금을 수상하며, 인공지능 기반 자율 사이버 방어 기술의 우수성을 세계 무대에서 입증했다. AI 사이버 챌린지(AIxCC)는 DARPA와 미국 보건첨단연구계획국(ARPA-H)이 공동 주관하는 2년간의 글로벌 경연으로, 인공지능 기반 CRS를 활용해 소프트웨어의 취약점을 자동 분석·탐지·수정하는 능력을 겨룬다
2025-08-10회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다. *복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것 우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph
2025-08-05이차전지 양극 소재는 높은 충전 속도, 에너지 밀도, 안정성 등 어려운 기준들을 전부 충족해야 하기 때문에 소재 개발을 위해서는 수많은 소재 후보군을 고려해 탐색을 진행해야만 한다. 국내 산학 협력 연구진이 AI 및 자동화 시스템을 활용해 연구자의 개입 없이 이차전지 양극 소재의 개발을 진행하는 자율 탐색 실험실*을 구축했다. 이를 통해 개발 과정 중 발생하는 연구자의 노동을 최소화하며 탐색 기간을 93% 단축했다. *자율 탐색 실험실: 자율적으로 실험을 설계, 수행, 분석하여 최적의 소재를 탐색하는 플랫폼 우리 대학 신소재공학과 서동화 교수 연구팀이 포스코홀딩스 미래기술연구원(원장 김기수) 에너지소재연구소 LIB소재연구센터 연구팀과 산학 협력 연구를 통해, AI 및 자동화 기술을 활용해 이차전지 양극 소재를 탐색하는 자율 탐색 실험실을 구축했다고 3일 밝혔다. 이차전지 양극 소재 개발은 필연적으로 시료의 무게를 칭량하고 이송하는 정량, 혼합, 소결* 및 분석 과정을 거
2025-08-05우리 대학은 7월 31일 오전 국회의원회관에서 ‘인공지능 대전환(AX)의 미래: 피지컬 AI’를 주제로, 한국의 AI 반도체 및 제조업 강점을 활용한 기술패권 전략을 논의하기 위한 초당적 정책 포럼인 ‘제1회 국가미래전략기술포럼’을 성공적으로 개최했다고 31일 밝혔다. 이번 포럼은 KAIST가 주관하고, 국회 과학기술정보방송통신위원회 간사 최형두 의원(국민의힘)과 산업통상자원중소벤처기업위원회 위원 김한규 의원(더불어민주당)이 공동 주최하였다. 본 포럼은 10월을 제외하고 매월 한 차례씩 총 5회 개최되는 국가미래전략기술포럼의 첫 출발점이다. 포럼의 대주제인 ‘인공지능 대전환(Artificial Intelligence Transformation, AX)’은 생성형 AI의 확산으로 산업, 경제, 사회 전반에 걸쳐 촉발된 구조적 변화에 대응하기 위해 기획됐다. 제1회 포럼의 주제는 ‘피지컬 AI(P
2025-07-31