< 뇌인지과학과 김대수 교수 >
우리 대학 생명과학과 김대수 교수 연구팀이 한국과학기술연구원(KIST) 김정진 박사팀과 공동연구를 통해 동물이 잠을 자는 동안에도 소리에 반응해 각성하는 원리를 규명했다고 20일 밝혔다.
수면은 뇌의 활동을 정비하고 건강을 유지하는 매우 중요한 생리작용이다. 잠을 자는 동안 감각신경의 작용이 차단되므로 주변의 위험을 감지하는 능력이 감소하게 된다. 그러나 많은 동물은 잠자는 동안에도 포식자의 접근을 감지하고 반응한다. 과학자들은 동물이 깊은 잠과 낮은 잠을 번갈아 자면서 언제 있을지 모를 위험에 대비한다고 생각했다.
김대수 교수 연구팀은 깊은 잠을 자는 동안에도 동물이 소리에 반응하는 신경회로가 있다는 사실을 발견했다. 깨어 있을 때는 청각 시상핵 (Medial geniculate thalamus)이 소리에 반응하지만 깊은 잠 즉 비 램수면 (Non-REM) 동안에는 배내측 시상핵(Mediodorsal thalamus)이 소리에 반응해 뇌를 깨운다는 사실을 밝혔다.
< 그림 1. 전통적으로 소리신호는 청각신경에서 청각시상으로 전파되지만 깊은 수면 동안에는 청각신경이 뇌간신경을 통해 배내측시상으로 소리신호를 보내어 뇌의 각성을 유도한다. >
연구 결과 쥐가 깊은 잠에 빠졌을 때 청각 시상핵 신경도 잠을 자고 있었지만 배내측 시상핵 신경은 깨어 있어 소리를 들려주자 곧바로 반응했다. 또한 배내측 시상핵을 억제하면 소리를 들려줘도 쥐가 잠에서 깨어나지 못했으며 배내측 시상핵을 자극하면 소리 없이도 쥐가 수초 이내에 잠에서 깨어나는 것을 관찰할 수 있었다.
< 그림 2. 소리자극에 반응하는 GRIK4 배내측 신경. 소리자극이 주어진 시점을 기준으로 GRIK4 배내측 신경의 활성도가 증가하면서 각성효과가 유도됨. >
이것은 수면상태와 각성상태가 서로 다른 신경회로를 통해 청각신호를 전달 할 수 있다는 최초의 연구로서 국제 학술지 ‘커런트 바이올로지 (Current Biology)’에 2월 7일자로 보고됐으며 (https://www.nature.com/articles/d41586-023-00354-0) 국제학술지 네이처에 하이라이트 되었다. ( https://www.nature.com/articles/d41586-023-00354-0)
김대수 교수는 “이번 연구를 통해 수면 질환 등 다양한 뇌 질환에서 보이는 각성 및 감각장애에 대한 이해를 증진하고 향후 감각을 조절할 수 있는 디지털 헬스케어 개발 등 다양한 분야로 활용이 가능하다”라고 설명했다.
< 그림 3. 연구 모식도 >
한편 이번 연구는 한국연구재단 중견연구재단 과제로 지원됐다.
파킨슨병(PD)은 알파시누클린(α-synuclein) 단백질이 뇌세포 내에서 비정상적으로 응집되어 신경세포를 손상시키는 퇴행성 신경질환이다. KAIST 연구진은 파킨슨병의 핵심 병리 중 하나인 신경염증 조절에 있어 RNA 편집(RNA editing)이 중요한 역할을 한다는 사실을 세계 최초로 밝혀냈다. 우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 UCL 국립신경전문병원 연구소 및 프랜시스 크릭 연구소와의 공동 연구를 통해, 뇌를 보호하고자 염증 반응을 일으키는 교세포(astrocyte)에 대해 RNA 편집 효소인 에이다원(ADAR1)이 면역 반응을 조절하는 중요한 역할을 한다는 것을 밝혀내고 파킨슨병의 병리 진행에 핵심적인 역할을 한다는 사실을 입증했다. 최민이 교수 연구팀은 뇌 면역세포의 염증반응을 알아보고자 파킨슨 환자에게서 유래한 줄기세포를 이용해 뇌의 신경세포를 돕는 교세포와 신경세포로 구성된 세포 모델을 만들고, 파킨슨병의 원인이 된다고 알려진 알파
2025-04-28기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다. 우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다. 신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집
2025-04-25교모세포종(Glioblastoma)은 가장 공격적이고 예후가 나쁜 대표적 악성 뇌종양으로, 광범위한 뇌 절제술을 포함한 표준 치료 후에도 1년 이내 대부분 재발하며 생존률이 매우 낮은 치명적인 질환이다. KAIST 연구진이 교모세포종에 암세포로 발전하는 가능성을 가진 전암세포가 있다는 것을 최초로 밝혔다. 우리 대학 의과학대학원 이정호 교수 연구팀은 세계 최초로 교모세포종의 진화와 재발 및 치료 저항성의 근원이 되는 ‘전암세포(Precancerous cell)’를 규명했다. 이정호 교수 연구팀은 2018년 교모세포종이 뇌 깊은 곳에 있는 돌연변이 줄기세포로부터 시작된다는 것을 최초로 밝혀내며 ‘네이쳐(Nature)’지에 게재한 바 있다. 이번 연구에서는 암의 씨앗과 같은 ‘전암 세포’가 어디서 유래하는지, 즉, 돌연변이 기원 세포가 어떻게 분화되는지를 규명하였고 이 전암 세포가 종양 내 세부 유형의 암세포들을
2025-04-21뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다. 우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다. * 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델 현재의 컴퓨터는 동영상과 같이 시간 흐름에 따
2025-04-16생명과학 분야의 ‘노벨상 펀드’로 불리며, 지금까지 31명의 노벨상 수상자를 배출한 ‘휴먼 프론티어 사이언스 프로그램(HFSP)’에서 우리 대학 연구진이 2025년 수상자로 선정됐다. 이번 수상은 KAIST의 학제 간 융합연구와 혁신적 연구 역량이 다시 한 번 전 세계적으로 인정받았다는 점에서 큰 의미를 가진다. 우리 대학 전기및전자공학부 윤영규 교수와 바이오및뇌공학과 신우정 교수가 2025년 휴먼 프론티어 사이언스 프로그램(HFSP) 상을 받게 됐다고 1일 밝혔다. 두 교수는 올해 첫 선정자를 배출한 액셀러레이터 트랙에 선정되어 향후 2년간 약 10만 달러를 지원받게 된다. 휴먼 프론티어 사이언스 프로그램(HFSP)은 생명과학 분야 세계 최고 권위의 국제 연구 지원 프로그램으로, 독창적인 학제 간 융합 국제공동연구를 수행할 역량이 있는 연구자를 선별, 새로운 접근법으로 생명 기전을 밝히는 연구를 지원하자는 취지로 1997년 G7
2025-04-01