< (왼쪽부터) 화학과 김현우 교수, 김동훈 석박사통합과정, 최경선 석박사통합과정 >
임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다.
*광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다.
우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일 밝혔다. 이번 연구는 다수의 반응물을 동시에 투입해 진행하는 비대칭 촉매 반응을 고해상도 불소 핵자기공명분광기(19F NMR)를 활용해 정밀 분석한 세계 최초의 기술로, 신약 개발 및 촉매 최적화 등 다양한 분야에 획기적인 기여가 기대된다.
* 인공지능 기반 자율합성: 인공지능(AI)을 활용해 화학 물질 합성 과정을 자동화하고 최적화하는 첨단 기술로, 미래 실험실의 자동화 및 지능형 연구 환경을 구현할 핵심 요소로 주목받고 있다. AI가 실험 조건을 예측·조절하고 결과를 해석해 후속 실험을 스스로 설계함으로써 반복 실험 수행 시 인간 개입을 최소화해 연구 효율성과 혁신성을 크게 높인다.
현재 자율합성 시스템은 반응 설계부터 수행까지는 자동화가 가능하지만, 반응 결과 분석은 전통적 장비를 활용한 개별 처리 방식에 의존하고 있어 속도 저하와 병목 현상이 발생하며 고속 반복 실험에는 적합하지 않다는 문제점이 제기돼 왔다.
또한, 1990년대에 제안된 다기질 동시 스크리닝 기법은 반응 분석의 효율을 극대화할 전략으로 주목받았지만, 기존 크로마토그래피 기반 분석법의 한계로 인해 적용 가능한 기질 수가 제한적이었다. 특히 원하는 광학 이성질체만 선택하여 합성하는 비대칭 합성 반응에서는 10종 이상의 기질을 동시에 분석하는 것이 불가능에 가까웠다.
< 그림 1. 기존의 유기 반응 평가법은 단일 기질을 사용해 최적 반응 조건을 도출한 뒤, 해당 조건에서의 기질 범위를 하나씩 확장해나가는 방식을 따르기에 잠재적인 반응 가능 영역이 미처 탐색되지 않은 채로 남는다. 이를 극복하기 위해 고효율 스크리닝을 도입하여 기질에 대한 촉매의 반응성을 넓게 탐색하며, 특히 다기질 스크리닝과 함께 결합할 경우 반응의 범위와 경향성을 훨씬 더 넓고 체계적으로 파악할 수 있다. >
이러한 한계를 극복하기 위해, 연구팀은 다수의 반응물을 하나의 반응 용기에 투입하여 동시에 비대칭 촉매 반응을 수행한 뒤 불소 작용기를 생성물에 도입하고, 자체 개발한 카이랄 코발트 시약을 적용해 모든 광학 이성질체를 명확하게 정량 분석할 수 있는 불소 핵자기공명분광기(19F NMR) 기반 다기질 동시 스크리닝 기술을 구현했다.
연구팀은 19F NMR의 우수한 분해능과 민감도를 활용해, 21종 기질의 비대칭 합성 반응을 단일 반응 용기에서 동시에 수행하고 생성물의 수율과 광학 이성질체 비율을 별도의 분리 과정 없이 정량 측정하는 데 성공했다.
김현우 교수는 “여러 기질을 한 반응기에 넣고 비대칭 합성 반응을 동시에 수행하는 것은 누구나 할 수 있지만, 생성물 전체를 정확하게 분석하는 것은 지금까지 풀기 어려운 과제였다”며, “세계 최고 수준의 다기질 스크리닝 분석 기술을 구현함으로써 AI 기반 자율합성 플랫폼의 분석 역량 향상에 크게 기여할 수 있을 것으로 기대된다”고 말했다.
< 그림 2. 서로 다른 기질들을 하나의 반응기 안에서 동시에 반응시키는 다기질 비대칭 촉매 반응을 불소 핵자기공명을 활용해 분석하는 방법을 구현했다. 배경신호가 깨끗하고 화학적 이동 범위가 넓은 불소 핵자기공명의 특성 활용하여 각 기질의 반응성을 정량적으로 분석할 수 있으며, 코발트 금속 착물을 이용하여 모든 반응물의 광학활성까지 동시에 측정할 수 있음을 알 수 있다. >
이어 “이번 연구는 신약 개발에 필수적인 비대칭 촉매 반응의 효율성과 선택성을 신속히 검증할 수 있는 기술로, AI 기반 자율화 연구의 핵심 분석 도구로 활용될 전망이다”라고 밝혔다.
< 그림 3. 총 21가지의 기질을 사용한 다기질 환원아민화 반응에서 불소 핵자기공명 기반의 분석 플랫폼을 이용해 촉매 시스템에 따른 반응물의 수율과 광학활성을 동시에 측정한 것을 알 수 있다. 각 반응물의 수율은 색의 채도로, 광학활성도는 숫자로 표시하였다. >
이번 연구에는 우리 대학 화학과 김동훈 석박통합과정 학생(제1 저자), 최경선 석박통합과정 학생(제2 저자) 가 참여했으며, 화학 분야 세계적 권위의 국제 학술지 미국화학회지(Journal of the American Chemical Society) 에 2025년 5월 27일 자 온라인 게재됐다.
※ 논문명: One-pot Multisubstrate Screening for Asymmetric Catalysis Enabled by 19F NMR-based Simultaneous Chiral Analysis
※ DOI: 10.1021/jacs.5c03446
이번 연구는 한국연구재단 중견연구자 지원사업, 비대칭 촉매반응 디자인센터, KAIST KC30 프로젝트의 지원을 받아 수행됐다.
< 그림 4. 다기질 스크리닝 반응 수행과 불소 핵자기공명분광기를 활용하는 개념도 >
우리 대학 수리과학과 임미경 교수가 AIP 2025(12th Applied Inverse Problems Conference)에서 ‘기하함수론(Geometric function theory)에 기반한 역문제 연구’를 주제로 기조강연(plenary talk)을 진행했다. AIP는 응용수학 분야의 대표적 국제학술대회 중 하나로, 국제역문제학회(IPIA, Inverse Problems International Association)가 주관하며 격년으로 열린다. 이번 학회는 7월 28일부터 8월 1일까지 브라질 리우데자네이루에서 개최됐으며, 기조강연, 미니심포지움 40여 개, 포스터 세션으로 구성됐다. IPIA는 2007년 시작됐으며 2022년 독일에서 공식 등록된 비영리 국제학술단체로 재창립됐다. 임미경 교수는 당시 재창립 집행위원으로 활동했다. 이번 강연에서는 임 교수 연구팀이 지난 10여 년간 수행해 온 전기/탄성방정식 경계치 문제에 대한 새로운
2025-08-12우리 대학은 ‘2025 APEC 청소년 STEM* 공동연구 및 경진대회’에 참여한 10개국 28명의 청소년 연구자와 30여 명의 전문가를 대상으로 한 글로벌 과학교류 프로그램,‘APEC 청소년 STEM 경진대회 KAIST 학술 교류 프로그램(APEC Youth STEM Conference KAIST Academic Program)’을 지난 8월 9일(토) 대전 본원 캠퍼스에서 성공적으로 개최했다고 11일 밝혔다. *STEM(Science, Technology, Engineering, Math)은 이공계를 의미함 이번 대회는 과학기술정보통신부 주최, APEC 과학영재멘토링센터 주관으로 2025년 8월 6일(수)부터 8월 9일(토)까지 KAIST(대전)와 부설 한국과학영재학교(부산)에서 진행되었으며, KAIST 프로그램은 APEC 과학영재멘토링센터가 주관하고 KAIST 과학영재교육연구원이 지원했다. 참가자들은 한국의 최첨단 연구
2025-08-12기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10우리 대학은 삼성리서치 김태수 상무가 이끄는 전기및전자공학부 윤인수 교수 연구팀이 POSTECH, 조지아공과대학교(Georgia Tech) 연구진과 함께 구성한 연합팀 ‘팀 애틀랜타(Team Atlanta)’가 8월 8일(현지 시각) 미국 라스베이거스에서 열린 세계 최대 해킹 콘퍼런스‘DEF CON 33’에서, 미국 국방고등연구계획국(DARPA) 주관‘AI 사이버 챌린지(AIxCC)’에서 최종 우승을 차지했다고 9일 밝혔다. 이번 성과로 팀은 미화 400만 달러(약 55억 원)의 상금을 수상하며, 인공지능 기반 자율 사이버 방어 기술의 우수성을 세계 무대에서 입증했다. AI 사이버 챌린지(AIxCC)는 DARPA와 미국 보건첨단연구계획국(ARPA-H)이 공동 주관하는 2년간의 글로벌 경연으로, 인공지능 기반 CRS를 활용해 소프트웨어의 취약점을 자동 분석·탐지·수정하는 능력을 겨룬다
2025-08-10접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다. 우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다. 이번 기술은 ‘필드 프로그래밍(field-programmability)&rs
2025-08-06